scholarly journals Weak convergence of conditioned birth-death processes in discrete time

1997 ◽  
Vol 34 (01) ◽  
pp. 46-53
Author(s):  
Pauline Schrijner ◽  
Erik A. Van Doorn

We consider a discrete-time birth-death process on the non-negative integers with −1 as an absorbing state and study the limiting behaviour asn →∞ of the process conditioned on non-absorption until timen.By proving that a condition recently proposed by Martinez and Vares is vacuously true, we establish that the conditioned process is always weakly convergent when all self-transition probabilities are zero. In the aperiodic case we obtain a necessary and sufficient condition for weak convergence.

1997 ◽  
Vol 34 (1) ◽  
pp. 46-53 ◽  
Author(s):  
Pauline Schrijner ◽  
Erik A. Van Doorn

We consider a discrete-time birth-death process on the non-negative integers with −1 as an absorbing state and study the limiting behaviour as n → ∞ of the process conditioned on non-absorption until time n. By proving that a condition recently proposed by Martinez and Vares is vacuously true, we establish that the conditioned process is always weakly convergent when all self-transition probabilities are zero. In the aperiodic case we obtain a necessary and sufficient condition for weak convergence.


1980 ◽  
Vol 12 (01) ◽  
pp. 59-80 ◽  
Author(s):  
Erik A. Van Doorn

A birth–death process {x(t): t ≥ 0} with state space the set of non-negative integers is said to be stochastically increasing (decreasing) on the interval (t 1, t 2) if Pr {x(t) > i} is increasing (decreasing) with t on (t 1, t 2) for all i = 0, 1, 2, ···. We study the problem of finding a necessary and sufficient condition for a birth–death process with general initial state probabilities to be stochastically monotone on an interval. Concrete results are obtained when the initial distribution vector of the process is a unit vector. Fundamental in the analysis, and of independent interest, is the concept of dual birth–death processes.


1980 ◽  
Vol 12 (1) ◽  
pp. 59-80 ◽  
Author(s):  
Erik A. Van Doorn

A birth–death process {x(t): t ≥ 0} with state space the set of non-negative integers is said to be stochastically increasing (decreasing) on the interval (t1, t2) if Pr {x(t) > i} is increasing (decreasing) with t on (t1, t2) for all i = 0, 1, 2, ···. We study the problem of finding a necessary and sufficient condition for a birth–death process with general initial state probabilities to be stochastically monotone on an interval. Concrete results are obtained when the initial distribution vector of the process is a unit vector. Fundamental in the analysis, and of independent interest, is the concept of dual birth–death processes.


1993 ◽  
Vol 25 (01) ◽  
pp. 82-102
Author(s):  
M. G. Nair ◽  
P. K. Pollett

In a recent paper, van Doorn (1991) explained how quasi-stationary distributions for an absorbing birth-death process could be determined from the transition rates of the process, thus generalizing earlier work of Cavender (1978). In this paper we shall show that many of van Doorn's results can be extended to deal with an arbitrary continuous-time Markov chain over a countable state space, consisting of an irreducible class, C, and an absorbing state, 0, which is accessible from C. Some of our results are extensions of theorems proved for honest chains in Pollett and Vere-Jones (1992). In Section 3 we prove that a probability distribution on C is a quasi-stationary distribution if and only if it is a µ-invariant measure for the transition function, P. We shall also show that if m is a quasi-stationary distribution for P, then a necessary and sufficient condition for m to be µ-invariant for Q is that P satisfies the Kolmogorov forward equations over C. When the remaining forward equations hold, the quasi-stationary distribution must satisfy a set of ‘residual equations' involving the transition rates into the absorbing state. The residual equations allow us to determine the value of µ for which the quasi-stationary distribution is µ-invariant for P. We also prove some more general results giving bounds on the values of µ for which a convergent measure can be a µ-subinvariant and then µ-invariant measure for P. The remainder of the paper is devoted to the question of when a convergent µ-subinvariant measure, m, for Q is a quasi-stationary distribution. Section 4 establishes a necessary and sufficient condition for m to be a quasi-stationary distribution for the minimal chain. In Section 5 we consider ‘single-exit' chains. We derive a necessary and sufficient condition for there to exist a process for which m is a quasi-stationary distribution. Under this condition all such processes can be specified explicitly through their resolvents. The results proved here allow us to conclude that the bounds for µ obtained in Section 3 are, in fact, tight. Finally, in Section 6, we illustrate our results by way of two examples: regular birth-death processes and a pure-birth process with absorption.


1984 ◽  
Vol 21 (03) ◽  
pp. 654-660 ◽  
Author(s):  
Sujit K. Basu ◽  
Manish C. Bhattacharjee

We show that the HNBUE family of life distributions is closed under weak convergence and that weak convergence within this family is equivalent to convergence of each moment sequence of positive order to the corresponding moment of the limiting distribution. A necessary and sufficient condition for weak convergence to the exponential distribution is given, based on a new characterization of exponentials within the HNBUE family of life distributions.


2005 ◽  
Vol 42 (01) ◽  
pp. 185-198 ◽  
Author(s):  
Erik A. Van Doorn ◽  
Alexander I. Zeifman

We study birth-death processes on the nonnegative integers, where {1, 2,…} is an irreducible class and 0 an absorbing state, with the additional feature that a transition to state 0 may occur from any state. We give a condition for absorption (extinction) to be certain and obtain the eventual absorption probabilities when absorption is not certain. We also study the rate of convergence, as t → ∞, of the probability of absorption at time t, and relate it to the common rate of convergence of the transition probabilities that do not involve state 0. Finally, we derive upper and lower bounds for the probability of absorption at time t by applying a technique that involves the logarithmic norm of an appropriately defined operator.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jinshu Chen

We aim to investigate the convergence of operators sequences acting on functionals of discrete-time normal martingales M. We first apply the 2D-Fock transform for operators from the testing functional space S(M) to the generalized functional space S⁎(M) and obtain a necessary and sufficient condition for such operators sequences to be strongly convergent. We then discuss the integration of these operator-valued functions. Finally, we apply the results obtained here and establish the existence and uniqueness of solution to quantum stochastic differential equations in terms of operators acting on functionals of discrete-time normal martingales M. And also we prove the continuity and continuous dependence on initial values of the solution.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Hong Shi ◽  
Guangming Xie ◽  
Wenguang Luo

The controllability issues for discrete-time linear systems with delay in state and control are addressed. By introducing a new concept, the controllability realization index (CRI), the characteristic of controllability is revealed. An easily testable necessary and sufficient condition for the controllability of discrete-time linear systems with state and control delay is established.


2005 ◽  
Vol 42 (1) ◽  
pp. 185-198 ◽  
Author(s):  
Erik A. Van Doorn ◽  
Alexander I. Zeifman

We study birth-death processes on the nonnegative integers, where {1, 2,…} is an irreducible class and 0 an absorbing state, with the additional feature that a transition to state 0 may occur from any state. We give a condition for absorption (extinction) to be certain and obtain the eventual absorption probabilities when absorption is not certain. We also study the rate of convergence, as t → ∞, of the probability of absorption at time t, and relate it to the common rate of convergence of the transition probabilities that do not involve state 0. Finally, we derive upper and lower bounds for the probability of absorption at time t by applying a technique that involves the logarithmic norm of an appropriately defined operator.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Songlin Wo ◽  
Xiaoxin Han

The finite-time stability (FTS) problem of discrete-time linear singular systems (DTLSS) is considered in this paper. A necessary and sufficient condition for FTS is obtained, which can be expressed in terms of matrix inequalities. Then, another form of the necessary and sufficient condition for FTS is also given by using matrix-null space technology. In order to solve the stability problem expediently, a sufficient condition for FTS is given via linear matrix inequality (LMI) approach; this condition can be expressed in terms of LMIs. Finally, an illustrating example is also given to show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document