An alternative approach to linear and nonlinear stability calculations at finite Reynolds numbers

1984 ◽  
Vol 146 ◽  
pp. 313-330 ◽  
Author(s):  
F. T. Smith ◽  
D. Papageorgiou ◽  
J. W. Elliott

An extended version of the interactive boundary-layer approach which has been used widely in steady-flow calculations is applied here to the linear and nonlinear stability properties of channel flows and boundary layers in the moderate-to-large Reynolds-number regime. This is the regime of most practical concern. First, for linear stability the agreement found between the interactive approach and Orr-Sommerfeld results remains fairly close even at Reynolds numbers as low as about$\frac{1}{10}$of the critical value for plane Poiseuille flow, or$\frac{1}{5}$for Blasius flow. Secondly, nonlinear unsteady calculations and comparisons with full solutions obtained by enlarging the same method are also presented. Overall the work suggests that, at the finite Reynolds numbers where real interest lies, the dominant physical processes of instability in channel flow and boundary layers are of boundary-layer form, with interaction, and it suggests also an alternative numerical technique for determining those processes. This alternative technique uses the interactive boundary-layer method as the central means for obtaining full unsteady Navier-Stokes solutions.

1991 ◽  
Vol 113 (4) ◽  
pp. 608-616 ◽  
Author(s):  
H. M. Jang ◽  
J. A. Ekaterinaris ◽  
M. F. Platzer ◽  
T. Cebeci

Two methods are described for calculating pressure distributions and boundary layers on blades subjected to low Reynolds numbers and ramp-type motion. The first is based on an interactive scheme in which the inviscid flow is computed by a panel method and the boundary layer flow by an inverse method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier–Stokes equations with an embedded grid technique that permits accurate calculation of boundary layer flows. Studies for the Eppler-387 and NACA-0012 airfoils indicate that both methods can be used to calculate the behavior of unsteady blade boundary layers at low Reynolds numbers provided that the location of transition is computed with the en method and the transitional region is modeled properly.


Author(s):  
H. M. Jang ◽  
M. F. Platzer ◽  
J. A. Ekaterinaris ◽  
T. Cebeci

Two methods are described for calculating pressure distributions and boundary layers on blades subjected to low Reynolds numbers and ramp–type motion. The first is based on an interactive scheme in which the inviscid flow is computed by a panel method and the boundary layer flow by an inverse method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier–Stokes equations with an embedded grid technique that permits accurate calculation of boundary layer flows. Studies for the Eppler and NACA–0012 airfoils indicate that both methods can be used to calculate the behavior of unsteady blade boundary layers at low Reynolds numbers provided that the location of transition is computed with the en–method and the transitional region is modelled properly.


1960 ◽  
Vol 9 (4) ◽  
pp. 593-602 ◽  
Author(s):  
Iam Proudman

The purpose of this note is to describe a particular class of steady fluid flows, for which the techniques of classical hydrodynamics and boundary-layer theory determine uniquely the asymptotic flow for large Reynolds number for each of a continuously varied set of boundary conditions. The flows involve viscous layers in the interior of the flow domain, as well as boundary layers, and the investigation is unusual in that the position and structure of all the viscous layers are determined uniquely. The note is intended to be an illustration of the principles that lead to this determination, not a source of information of practical value.The flows take place in a two-dimensional channel with porous walls through which fluid is uniformly injected or extracted. When fluid is extracted through both walls there are boundary layers on both walls and the flow outside these layers is irrotational. When fluid is extracted through one wall and injected through the other, there is a boundary layer only on the former wall and the inviscid rotational flow outside this layer satisfies the no-slip condition on the other wall. When fluid is injected through both walls there are no boundary layers, but there is a viscous layer in the interior of the channel, across which the second derivative of the tangential velocity is discontinous, and the position of this layer is determined by the requirement that the inviscid rotational flows on either side of it must satisfy the no-slip conditions on the walls.


1985 ◽  
Vol 160 ◽  
pp. 281-295 ◽  
Author(s):  
F. A. Milinazzo ◽  
P. G. Saffman

Computations of two-dimensional solutions of the Navier–Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on the physical constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artifice of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.


2019 ◽  
Vol 875 ◽  
pp. 44-70 ◽  
Author(s):  
Karin Blackman ◽  
Laurent Perret ◽  
Romain Mathis

Urban-type rough-wall boundary layers developing over staggered cube arrays with plan area packing density, $\unicode[STIX]{x1D706}_{p}$, of 6.25 %, 25 % or 44.4 % have been studied at two Reynolds numbers within a wind tunnel using hot-wire anemometry (HWA). A fixed HWA probe is used to capture the outer-layer flow while a second moving probe is used to capture the inner-layer flow at 13 wall-normal positions between $1.25h$ and $4h$ where $h$ is the height of the roughness elements. The synchronized two-point HWA measurements are used to extract the near-canopy large-scale signal using spectral linear stochastic estimation and a predictive model is calibrated in each of the six measurement configurations. Analysis of the predictive model coefficients demonstrates that the canopy geometry has a significant influence on both the superposition and amplitude modulation. The universal signal, the signal that exists in the absence of any large-scale influence, is also modified as a result of local canopy geometry suggesting that although the nonlinear interactions within urban-type rough-wall boundary layers can be modelled using the predictive model as proposed by Mathis et al. (J. Fluid Mech., vol. 681, 2011, pp. 537–566), the model must be however calibrated for each type of canopy flow regime. The Reynolds number does not significantly affect any of the model coefficients, at least over the limited range of Reynolds numbers studied here. Finally, the predictive model is validated using a prediction of the near-canopy signal at a higher Reynolds number and a prediction using reference signals measured in different canopy geometries to run the model. Statistics up to the fourth order and spectra are accurately reproduced demonstrating the capability of the predictive model in an urban-type rough-wall boundary layer.


2002 ◽  
Vol 465 ◽  
pp. 99-130 ◽  
Author(s):  
A. V. OBABKO ◽  
K. W. CASSEL

Numerical solutions of the unsteady Navier–Stokes equations are considered for the flow induced by a thick-core vortex convecting along a surface in a two-dimensional incompressible flow. The presence of the vortex induces an adverse streamwise pressure gradient along the surface that leads to the formation of a secondary recirculation region followed by a narrow eruption of near-wall fluid in solutions of the unsteady boundary-layer equations. The locally thickening boundary layer in the vicinity of the eruption provokes an interaction between the viscous boundary layer and the outer inviscid flow. Numerical solutions of the Navier–Stokes equations show that the interaction occurs on two distinct streamwise length scales depending upon which of three Reynolds-number regimes is being considered. At high Reynolds numbers, the spike leads to a small-scale interaction; at moderate Reynolds numbers, the flow experiences a large-scale interaction followed by the small-scale interaction due to the spike; at low Reynolds numbers, large-scale interaction occurs, but there is no spike or subsequent small-scale interaction. The large-scale interaction is found to play an essential role in determining the overall evolution of unsteady separation in the moderate-Reynolds-number regime; it accelerates the spike formation process and leads to formation of secondary recirculation regions, splitting of the primary recirculation region into multiple corotating eddies and ejections of near-wall vorticity. These eddies later merge prior to being lifted away from the surface and causing detachment of the thick-core vortex.


2015 ◽  
Vol 783 ◽  
pp. 379-411 ◽  
Author(s):  
I. Marusic ◽  
K. A. Chauhan ◽  
V. Kulandaivelu ◽  
N. Hutchins

In this paper we study the spatial evolution of zero-pressure-gradient (ZPG) turbulent boundary layers from their origin to a canonical high-Reynolds-number state. A prime motivation is to better understand under what conditions reliable scaling behaviour comparisons can be made between different experimental studies at matched local Reynolds numbers. This is achieved here through detailed streamwise velocity measurements using hot wires in the large University of Melbourne wind tunnel. By keeping the unit Reynolds number constant, the flow conditioning, contraction and trip can be considered unaltered for a given boundary layer’s development and hence its evolution can be studied in isolation from the influence of inflow conditions by moving to different streamwise locations. Careful attention was given to the experimental design in order to make comparisons between flows with three different trips while keeping all other parameters nominally constant, including keeping the measurement sensor size nominally fixed in viscous wall units. The three trips consist of a standard trip and two deliberately ‘over-tripped’ cases, where the initial boundary layers are over-stimulated with additional large-scale energy. Comparisons of the mean flow, normal Reynolds stress, spectra and higher-order turbulence statistics reveal that the effects of the trip are seen to be significant, with the remnants of the ‘over-tripped’ conditions persisting at least until streamwise stations corresponding to $Re_{x}=1.7\times 10^{7}$ and $x=O(2000)$ trip heights are reached (which is specific to the trips used here), at which position the non-canonical boundary layers exhibit a weak memory of their initial conditions at the largest scales $O(10{\it\delta})$, where ${\it\delta}$ is the boundary layer thickness. At closer streamwise stations, no one-to-one correspondence is observed between the local Reynolds numbers ($Re_{{\it\tau}}$, $Re_{{\it\theta}}$ or $Re_{x}$ etc.), and these differences are likely to be the cause of disparities between previous studies where a given Reynolds number is matched but without account of the trip conditions and the actual evolution of the boundary layer. In previous literature such variations have commonly been referred to as low-Reynolds-number effects, while here we show that it is more likely that these differences are due to an evolution effect resulting from the initial conditions set up by the trip and/or the initial inflow conditions. Generally, the mean velocity profiles were found to approach a constant wake parameter ${\it\Pi}$ as the three boundary layers developed along the test section, and agreement of the mean flow parameters was found to coincide with the location where other statistics also converged, including higher-order moments up to tenth order. This result therefore implies that it may be sufficient to document the mean flow parameters alone in order to ascertain whether the ZPG flow, as described by the streamwise velocity statistics, has reached a canonical state, and a computational approach is outlined to do this. The computational scheme is shown to agree well with available experimental data.


Volume 1 ◽  
2004 ◽  
Author(s):  
Alireza Najafiyazdi

In this paper we try to derive improved formulations for laminar boundary layers in incompressible flows by using the concept of viscous potential flows, presented in Joseph [1] and Joseph [2], as the outer flow. Bernoulli’s equation is used at the edge of boundary layer to make the basic assumption to deduce the presented formulas. The momentum equation is derived directly from the Navier-Stokes equations and then simplified using an order of magnitude analyze. However an additional term, μ∂2u∞∂x2, remains in the momentum equation to represent the contribution of the viscosity of the outer potential flow at the edge of the boundary layer. The viscosity of the outer viscous flow shows itself also in momentum-integral and energy-integral equations. Numerical results showed that at high Reynolds numbers and low angles of attack the results of the two formulas are almost the same, but for lower Reynolds numbers and higher angles of attack the difference between the results is remarkable.


Author(s):  
Patricio I. Rosen Esquivel ◽  
Jan H. M. ten Thije Boonkkamp ◽  
Jacques A. M. Dam ◽  
Robert M. M. Mattheij

In this paper we study the effect of wall-shape on laminar flow in corrugated pipes. The main objectives of this paper are to characterize how the flow rate varies with wall-shape, and to identify which shapes enhance the flow rate. We conduct our study by numerically solving the Navier-Stokes equations for a periodic section of the pipe. The numerical model is validated with experimental data on the pressure drop and friction factor. The effect of wall-shape is studied by considering a family of periodic pipes, in which the wall-shape is characterized by the amplitude, and the ratio between the lengths of expansion and contraction of a periodic section. We study the effect that varying these parameters has on the flow. We show that for small Reynolds numbers, a symmetric shape yields a higher flow rate than an asymmetric shape. For large Reynolds numbers, a configuration with a large expansion region, followed by a short contraction region, performs better. We show that when the amplitude is fixed, there exists an optimal ratio of expansion/contraction which maximizes the flow rate. The flow rate can be increased by 8%, for a geometry with small period; in the case of a geometry with large period, the flow rate increases by 35%, for large Reynolds number, and even 120% for small Reynolds numbers.


2020 ◽  
Vol 85 (6) ◽  
pp. 1021-1040
Author(s):  
Eleanor C Johnstone ◽  
Philip Hall

Abstract Results are presented for nonlinear equilibrium solutions of the Navier–Stokes equations in the boundary layer set up by a flat plate started impulsively from rest. The solutions take the form of a wave–roll–streak interaction, which takes place in a layer located at the edge of the boundary layer. This extends previous results for similar nonlinear equilibrium solutions in steady 2D boundary layers. The results are derived asymptotically and then compared to numerical results obtained by marching the reduced boundary-region disturbance equations forward in time. It is concluded that the previously found canonical free-stream coherent structures in steady boundary layers can be embedded in unbounded, unsteady shear flows.


Sign in / Sign up

Export Citation Format

Share Document