Particle motion in the stagnation zone of an impinging air jet

1995 ◽  
Vol 299 ◽  
pp. 333-366 ◽  
Author(s):  
Steven L. Anderson ◽  
Ellen K. Longmire

This study investigated particle behaviour in the stagnation zone of natural and forced round impinging air jets using flow visualization, image analysis, and particle image velocimetry. The jet Reynolds number was 21000, and the nozzle to plate spacing was five diameters. Small mass loadings of glass beads with inertial time constants τp of 1.7 and 7 ms were examined. The Stokes number associated with the mean flow Stm = τpU0/D ranged from 0.6 to 2.4, and the Stokes number associated with vortices in the forced flow St′ = τpf ranged from 0.3 to 1.25 where f is the vortex passage frequency. Particle velocities near the wall deviated strongly from fluid velocities, resulting in rebound and non-Stokesian effects (i.e. significant particle Reynolds numbers Rep). The deceleration associated with rebounding caused long particle residence times in the stagnation zone and significant increases in particle number density above the plate. Rebound height and the height of the region of particle accumulation were well correlated and increased with Stm. Particles associated with lower Stm were accelerated in the radial direction more quickly, not only because of their decreased inertia, but also because of the larger fluid velocties encountered. Shear layer vortices produced spatial variations in particle concentration in the free jet which caused number density near the plate to fluctuate with time. The vortices had little effect on particle motion near the stagnation point, however. Only particles in the vicinity of vortex cores felt the influence of the vortex-induced velocity field. Hence, particle motion in the stagnation zone was most dependent on the mean flow (and thus Stm).

2015 ◽  
Vol 766 ◽  
Author(s):  
Niranjan Reddy Challabotla ◽  
Lihao Zhao ◽  
Helge I. Andersson

AbstractThe translational and rotational dynamics of oblate spheroidal particles suspended in a directly simulated turbulent channel flow have been examined. Inertial disk-like particles exhibited a significant preferential orientation in the plane of the mean shear. The rotational inertia about the symmetry axis of the disk-like particles hampered the spin-up of the flattest particles to match the mean flow vorticity. The influence of the particle shape on the orientation and rotation diminished as the translational inertia increased from Stokes number 1 to 30. An isotropization of both orientation and rotation could be observed in the core region of the channel. The translational motion of the oblate spheroids had a weak dependence on the aspect ratio. We therefore concluded that inertial particles sample nearly the same flow field irrespective of shape. Nevertheless, the orientation and rotation of disk-like particles turned out to be qualitatively different from the dynamics of fibre-like particles.


Author(s):  
Sebastian Schimek ◽  
Bernhard Ćosić ◽  
Jonas P. Moeck ◽  
Steffen Terhaar ◽  
Christian Oliver Paschereit

The current paper investigates the nonlinear interaction of the flow field and the unsteady heat release rate and the role of swirl fluctuations. The test rig consists of a generic swirl-stabilized combustor fed with natural gas and equipped with a high-amplitude forcing device. The influence of the phase between axial and azimuthal velocity oscillations is assessed on the basis of the amplitude and phase relations between the velocity fluctuations at the inlet and the outlet of the burner. These relations are determined in the experiment with the multimicrophone-method and a two component laser Doppler velocimeter (LDV). Particle image velocimetry (PIV) and OH*-chemiluminescence measurements are conducted to study the interaction between the flow field and the flame. For several frequency regimes, characteristic properties of the forced flow field and flame are identified, and a strong amplitude dependence is observed. It is found that the convective time delay between the swirl generator and the flame has an important influence on swirl-number oscillations and the flame dynamics in the low-frequency regime. For mid and high frequencies, significant changes in the mean flow field and the mean flame position are identified for high forcing amplitudes. These affect the interaction between coherent structures and the flame and are suggested to be responsible for the saturation in the flame response at high forcing amplitudes.


Author(s):  
P. D. Friedman ◽  
J. Katz

This paper investigates the rise-rate of droplets that are slightly lighter than the surrounding fluid. We experimentally investigate the effect of three parameters: Stokes number, turbulence intensity and droplet Reynolds number. Droplets were injected into a chamber with nearly isotropic turbulence and little mean flow. The results show that at high turbulence intensity, the mean droplet rise-rate is 25% of the rms velocity regardless of the Stokes number, while at low turbulence intensity, the droplets rise at a rate equal to the rise-rate in a quiescent fluid. At intermediate turbulence intensity, the rise-rate is strongly dependent on the Stokes number.


1985 ◽  
Vol 50 (11) ◽  
pp. 2396-2410
Author(s):  
Miloslav Hošťálek ◽  
Ivan Fořt

The study describes a method of modelling axial-radial circulation in a tank with an axial impeller and radial baffles. The proposed model is based on the analytical solution of the equation for vortex transport in the mean flow of turbulent liquid. The obtained vortex flow model is tested by the results of experiments carried out in a tank of diameter 1 m and with the bottom in the shape of truncated cone as well as by the data published for the vessel of diameter 0.29 m with flat bottom. Though the model equations are expressed in a simple form, good qualitative and even quantitative agreement of the model with reality is stated. Apart from its simplicity, the model has other advantages: minimum number of experimental data necessary for the completion of boundary conditions and integral nature of these data.


2019 ◽  
Vol 23 (10) ◽  
pp. 4323-4331 ◽  
Author(s):  
Wouter J. M. Knoben ◽  
Jim E. Freer ◽  
Ross A. Woods

Abstract. A traditional metric used in hydrology to summarize model performance is the Nash–Sutcliffe efficiency (NSE). Increasingly an alternative metric, the Kling–Gupta efficiency (KGE), is used instead. When NSE is used, NSE = 0 corresponds to using the mean flow as a benchmark predictor. The same reasoning is applied in various studies that use KGE as a metric: negative KGE values are viewed as bad model performance, and only positive values are seen as good model performance. Here we show that using the mean flow as a predictor does not result in KGE = 0, but instead KGE =1-√2≈-0.41. Thus, KGE values greater than −0.41 indicate that a model improves upon the mean flow benchmark – even if the model's KGE value is negative. NSE and KGE values cannot be directly compared, because their relationship is non-unique and depends in part on the coefficient of variation of the observed time series. Therefore, modellers who use the KGE metric should not let their understanding of NSE values guide them in interpreting KGE values and instead develop new understanding based on the constitutive parts of the KGE metric and the explicit use of benchmark values to compare KGE scores against. More generally, a strong case can be made for moving away from ad hoc use of aggregated efficiency metrics and towards a framework based on purpose-dependent evaluation metrics and benchmarks that allows for more robust model adequacy assessment.


2021 ◽  
Vol 108 ◽  
pp. 106377
Author(s):  
Mohammed Faheem ◽  
Aqib Khan ◽  
Rakesh Kumar ◽  
Sher Afghan Khan ◽  
Waqar Asrar ◽  
...  

Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 162 ◽  
Author(s):  
Thorben Helmers ◽  
Philip Kemper ◽  
Jorg Thöming ◽  
Ulrich Mießner

Microscopic multiphase flows have gained broad interest due to their capability to transfer processes into new operational windows and achieving significant process intensification. However, the hydrodynamic behavior of Taylor droplets is not yet entirely understood. In this work, we introduce a model to determine the excess velocity of Taylor droplets in square microchannels. This velocity difference between the droplet and the total superficial velocity of the flow has a direct influence on the droplet residence time and is linked to the pressure drop. Since the droplet does not occupy the entire channel cross-section, it enables the continuous phase to bypass the droplet through the corners. A consideration of the continuity equation generally relates the excess velocity to the mean flow velocity. We base the quantification of the bypass flow on a correlation for the droplet cap deformation from its static shape. The cap deformation reveals the forces of the flowing liquids exerted onto the interface and allows estimating the local driving pressure gradient for the bypass flow. The characterizing parameters are identified as the bypass length, the wall film thickness, the viscosity ratio between both phases and the C a number. The proposed model is adapted with a stochastic, metaheuristic optimization approach based on genetic algorithms. In addition, our model was successfully verified with high-speed camera measurements and published empirical data.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3625
Author(s):  
Jon Hardwick ◽  
Ed B. L. Mackay ◽  
Ian G. C. Ashton ◽  
Helen C. M. Smith ◽  
Philipp R. Thies

Numerical modeling of currents and waves is used throughout the marine energy industry for resource assessment. This study compared the output of numerical flow simulations run both as a standalone model and as a two-way coupled wave–current simulation. A regional coupled flow-wave model was established covering the English Channel using the Delft D-Flow 2D model coupled with a SWAN spectral wave model. Outputs were analyzed at three tidal energy sites: Alderney Race, Big Roussel (Guernsey), and PTEC (Isle of Wight). The difference in the power in the tidal flow between coupled and standalone model runs was strongly correlated to the relative direction of the waves and currents. The net difference between the coupled and standalone runs was less than 2.5%. However, when wave and current directions were aligned, the mean flow power was increased by up to 7%, whereas, when the directions were opposed, the mean flow power was reduced by as much as 9.6%. The D-Flow Flexible Mesh model incorporates the effects of waves into the flow calculations in three areas: Stokes drift, forcing by radiation stress gradients, and enhancement of the bed shear stress. Each of these mechanisms is discussed. Forcing from radiation stress gradients is shown to be the dominant mechanism affecting the flow conditions at the sites considered, primarily caused by dissipation of wave energy due to white-capping. Wave action is an important consideration at tidal energy sites. Although the net impact on the flow power was found to be small for the present sites, the effect is site specific and may be significant at sites with large wave exposure or strong asymmetry in the flow conditions and should thus be considered for detailed resource and engineering assessments.


Author(s):  
Alexander Vakhrushev ◽  
Abdellah Kharicha ◽  
Ebrahim Karimi-Sibaki ◽  
Menghuai Wu ◽  
Andreas Ludwig ◽  
...  

AbstractA numerical study is presented that deals with the flow in the mold of a continuous slab caster under the influence of a DC magnetic field (electromagnetic brakes (EMBrs)). The arrangement and geometry investigated here is based on a series of previous experimental studies carried out at the mini-LIMMCAST facility at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The magnetic field models a ruler-type EMBr and is installed in the region of the ports of the submerged entry nozzle (SEN). The current article considers magnet field strengths up to 441 mT, corresponding to a Hartmann number of about 600, and takes the electrical conductivity of the solidified shell into account. The numerical model of the turbulent flow under the applied magnetic field is implemented using the open-source CFD package OpenFOAM®. Our numerical results reveal that a growing magnitude of the applied magnetic field may cause a reversal of the flow direction at the meniscus surface, which is related the formation of a “multiroll” flow pattern in the mold. This phenomenon can be explained as a classical magnetohydrodynamics (MHD) effect: (1) the closure of the induced electric current results not primarily in a braking Lorentz force inside the jet but in an acceleration in regions of previously weak velocities, which initiates the formation of an opposite vortex (OV) close to the mean jet; (2) this vortex develops in size at the expense of the main vortex until it reaches the meniscus surface, where it becomes clearly visible. We also show that an acceleration of the meniscus flow must be expected when the applied magnetic field is smaller than a critical value. This acceleration is due to the transfer of kinetic energy from smaller turbulent structures into the mean flow. A further increase in the EMBr intensity leads to the expected damping of the mean flow and, consequently, to a reduction in the size of the upper roll. These investigations show that the Lorentz force cannot be reduced to a simple damping effect; depending on the field strength, its action is found to be topologically complex.


Sign in / Sign up

Export Citation Format

Share Document