Abstract. Abundant numbers of sites and studies exist that document the Last Interglacial (Eemian, Ipswichian, MIS 5e) coastal record for geographically and geomorphologically diverse NW Europe. This paper documents a database of 141 known Last Interglacial sea-level indicative data points from in and around the North Sea (35 entries in Netherlands, 10 Belgium, 16 in Germany, 17 in Denmark, 8 in Britain) and the English Channel (28 entries for British and 25 for the French side, 3 on the Channel Isles), believed to be a representative and fairly complete inventory and assessment coming from some 80 published sites. The good geographic distribution (some 1500 km SW-NE) across the near field of the Scandinavian and British Ice Sheets and the attention paid to absolute and relative age control are assets of the NW European database compilation. The research history of Last Interglacial coastal environments and sea-level position for this area is long, methodically diverse and spread over regional literature in several languages. Last Interglacial high-stand shorelines of Dutch and German Bight parts of the North Sea, were of lagoonal and estuarine type and have preserved subsurface (data entry included estimates of non-GIA vertical land motion). In contrast, Last Interglacial high-stand shorelines along the English Channel are encountered above modern sea-level (data entry includes datum definitions). Our review and database compilation effort drew from the original regional literature, and paid particular attention to distinguishing between sea-level index points (SLIPs) and marine and terrestrial limiting-points. This paper describes the dominant sea-level indicators produced from region to region, compliant to the database structure of the special issue (WALIS), referenced to original source data. The sea level proxies in majority are obtained from localities with well-developed lithostratigraphic, morpho-stratigraphic and biostratigraphical constraints. Amino-Acid Racemization information is also prominent, especially in Britain, albeit for many sites the older, lesser quality applications of that technique. The majority of European continental sites have chronostratigraphic age-control, notably through regional Pollen Association Zones of known durations. This greatly helps to separate transgression, highstand (‘stillstand’) and regression subsets from within the interglacial, useful when summarizing and/or querying the dataset. In all regions, many SLIPs and limiting points have further independent age-control from luminescence (IRSL, OSL, TL), U-series and ESR dating techniques. Main foreseen usage of this database for the near field region of the European ice sheets is in GIA modelling.