scholarly journals Simulations of the dust acoustic instability in a collisional plasma with warm dust

2016 ◽  
Vol 82 (6) ◽  
Author(s):  
K. Quest ◽  
M. Rosenberg ◽  
B. Kercher ◽  
M. Dutreix

Dust acoustic (or dust density) waves have been observed in many laboratory dusty plasmas. These low-frequency waves involve the dynamics of highly charged and massive dust grains, and can be excited by the flow of ions relative to dust. In this paper, we consider the nonlinear development of the dust acoustic instability, excited by thermal ion flow, in a collisional plasma containing dust with high kinetic temperature (warm dust). It is shown that under certain conditions there may be a long-wavelength secondary instability in the nonlinear stage as dust gets heated by the waves. The characteristics of the nonlinear development are considered as a function of the relative charge density of the dust. Application to possible experimental parameters is discussed.

2002 ◽  
Vol 67 (4) ◽  
pp. 235-242 ◽  
Author(s):  
M. ROSENBERG

This note investigates an ion-dust streaming instability with frequency ω less than the dust collision frequency νd, in an unmagnetized collisional dusty plasma. Under certain conditions, a resistive instability can be excited by an ion drift on the order of the ion thermal speed, even when the dust acoustic wave is heavily damped. The effect of weak collisions on the usual dust acoustic instability in the regime ω > νd is also considered. Applications to experimental observations of low-frequency fluctuations in laboratory d.c. glow discharge dusty plasmas are discussed.


2020 ◽  
Vol 86 (6) ◽  
Author(s):  
K. Quest ◽  
M. Rosenberg ◽  
A. Levine

The excitation of low frequency dust acoustic (or dust density) waves in a dusty plasma can be driven by the flow of ions relative to dust. We consider the nonlinear development of the ion–dust streaming instability in a highly collisional plasma, where the ion and dust collision frequencies are a significant fraction of their corresponding plasma frequencies. This collisional parameter regime may be relevant to dusty plasma experiments under microgravity or ground-based conditions with high gas pressure. One-dimensional particle-in-cell simulations are presented, which take into account collisions of ions and dust with neutrals, and a background electric field that drives the ion flow. Ion flow speeds of the order of a few times thermal are considered. Waveforms of the dust density are found to have broad troughs and sharp crests in the nonlinear phase. The results are compared with the nonlinear development of the ion–dust streaming instability in a plasma with low collisionality.


2020 ◽  
Vol 14 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Rashmi Srivastava ◽  
Hitendra K. Malik ◽  
Devi Singh

AbstractThe dust acoustic solitary waves are theoretically investigated in dusty plasmas for different cases of with and without density gradients. These low-frequency solitary waves are studied using appropriate Korteweg–de Vries equations obtained using relevant stretched coordinates. The soliton solutions in homogeneous plasma, weakly inhomogeneous plasma and strongly inhomogeneous plasma, are thoroughly investigated for studying the effect of different parameters like dust charge and density of all the plasma species on the soliton profiles. The combination of the dust charge with its number density changes the dynamics of the solitons and that is further affected by the number density of the hot ion with respect to the cold ions.


1996 ◽  
Vol 44 (12) ◽  
pp. 1593-1598 ◽  
Author(s):  
N. D'Angelo ◽  
R.L. Merlino

2000 ◽  
Vol 64 (4) ◽  
pp. 359-370 ◽  
Author(s):  
VICTORIA V. YAROSHENKO ◽  
FRANK VERHEEST

Nonlinear electrostatic waves in self-gravitating dusty plasmas are considered in two limiting cases, according to whether the charged-particle dynamics is governed mostly by electrostatic forces or mostly by gravitation. This shows a significant difference between these two plasma media with respect to the envelope dynamics in the nonlinear regime. In the former case, when ω2pα > ω2Jα, the amplitude perturbations are longitudinally unstable only in the short-wave range, and the nonlinear effects can result in the formation of longitudinal dust-acoustic solitary waves. But even weak self-gravitational effects can lead to the existence of a long-wavelength range, where self-gravitation prevents the formation of dust-acoustic solitons, and only transverse solitary structures are possible. In the other limiting case (ω2pα < ω2Jα), there is always a transverse modulational instability, which can lead to transverse solitary waves. In both cases, there is a threshold for solitary-wave formation.


2018 ◽  
Vol 84 (6) ◽  
Author(s):  
M. Rosenberg ◽  
K. Quest ◽  
B. Kercher

The nonlinear development of a low frequency beam-cyclotron instability in a collisional plasma composed of magnetized ions and electrons and unmagnetized, negatively charged dust is investigated using one-dimensional particle-in-cell simulations. Collisions of charged particles with neutrals are taken into account via a Langevin operator. The instability, which is driven by an ion $\boldsymbol{E}\times \boldsymbol{B}$ drift, excites a quasi-discrete wavenumber spectrum of waves that propagate perpendicular to the magnetic field with frequency of the order of the dust plasma frequency. In the linear regime, the unstable wavelengths are of the order of the ion gyroradius. As the wave energy density increases, the dominant modes shift to longer wavelengths, suggesting a transition to a Hall-current-type instability. Parameters are considered that reflect the ordering of plasma and dust quantities in laboratory dusty plasmas with high magnetic field. Comparison with the nonlinear development of this beam cyclotron instability in a collisionless dusty plasma is also briefly discussed.


2012 ◽  
Vol 79 (1) ◽  
pp. 97-103
Author(s):  
HAMID REZA PAKZAD ◽  
MOULOUD TRIBECHE

AbstractNonlinear dust-acoustic (DA) shock waves in coupled dusty plasmas with negative dust grains and kappa-distributed electrons are discussed. Using a generalized hydrodynamic model, the dispersion relation and the Korteweg–de Vries-Burger (KdVB) equation for low-frequency DA modes in a strongly coupled dusty plasma are derived. The dependence of shock waves on various plasma parameters is then explored. A solitonic profile may be converted into a shock structure when correlation among dust particles becomes stronger. The amplitude as well as the steepness of shock waves increases with increasing the value of the spectral index k.


2011 ◽  
Vol 89 (2) ◽  
pp. 193-200 ◽  
Author(s):  
Hamid Reza Pakzad

The reductive perturbation method is used for deriving the Kordeweg–de Vries–Burgers (KdVB) equation in strongly coupled dusty plasmas, containing Boltzmann distributed electron and superthermal ions. We discuss the shock wave solutions and also study the effect of superthermal ions on the waves.


Sign in / Sign up

Export Citation Format

Share Document