collision frequency
Recently Published Documents


TOTAL DOCUMENTS

589
(FIVE YEARS 68)

H-INDEX

39
(FIVE YEARS 4)

2021 ◽  
Vol 11 (23) ◽  
pp. 11342
Author(s):  
Francisco Pizarro ◽  
Pablo Stuardo ◽  
Ricardo Olivares ◽  
Eva Rajo-Iglesias

This article presents a parametric study using full-wave simulations about the potential use of cold plasma discharges to achieve frequency reconfiguration on a Sievenpiper mushroom metasurface. The study was done by inserting plasma tubes in between the patches of the mushroom structure, in three different positions with respect to the top of the metasurface, and varying the electronic density while keeping the plasma collision frequency. The obtained results show that it is possible to shift the stop-band generated by the metasurface around 25% towards lower frequencies for an electron density value inside the tubes of 1014 cm−3, when they are placed in between the top patches of the metasurface. Additional insertion losses are exhibited when operating near the plasma frequency.


2021 ◽  
pp. 25-31
Author(s):  
Sergei Dvinin ◽  
Oleg Sinkevich ◽  
Dovlat Solikhov ◽  
Zafari Kodirzoda

The dispersion characteristics of surface and evanescent waves in metal-dielectric-plasma-dielectric-metal structure in the presence of collisions are investigated analytically and numer ically. In the absence of absorption, when the electron density passes through the doubled critical value, a rearrangement of the eigenwave structure, associated with the appearance of surface waves, occurs. A rearrangement also occurs in an absorbing plasma, but the numbers of reconnecting modes depend on the size of the structure and the ratio of the electron collision frequency to the field frequency. Correct consideration of this process is necessary for the analytical analysis of the field structure in plasma reactors, the design of plasma antennas, and the solution of other problems of plasma electrodynamics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pradeep Subedi ◽  
Suman Parajuli ◽  
Mario A. Alpuche-Aviles

We demonstrate that colloidal quantum dots of CdSe and CdSe/ZnS are detected during the photooxidation of MeOH, under broad spectrum illumination (250 mW/cm2). The stepwise photocurrent vs. time response corresponds to single entities adsorbing to the Pt electrode surface irreversibly. The adsorption/desorption of the QDs and the nature of the single entities is discussed. In suspensions, the QDs behave differently depending on the solvent used to suspend the materials. For MeOH, CdSe is not as stable as CdSe/ZnS under constant illumination. The photocurrent expected for single QDs is discussed. The value of the observed photocurrents, > 1 pA is due to the formation of agglomerates consistent with the collision frequency and suspension stability. The observed frequency of collisions for the stepwise photocurrents is smaller than the diffusion-limited cases expected for single QDs colliding with the electrode surface. Dynamic light scattering and scanning electron microscopy studies support the detection of aggregates. The results indicate that the ZnS layer on the CdSe/ZnS material facilitates the detection of single entities by increasing the stability of the nanomaterial. The rate of hole transfer from the QD aggregates to MeOH outcompetes the dissolution of the CdSe core under certain conditions of electron injection to the Pt electrode and in colloidal suspensions of CdSe/ZnS.


2021 ◽  
Vol 184 (3) ◽  
Author(s):  
J. Haack ◽  
C. Hauck ◽  
C. Klingenberg ◽  
M. Pirner ◽  
S. Warnecke

AbstractWe derive a multi-species BGK model with velocity-dependent collision frequency for a non-reactive, multi-component gas mixture. The model is derived by minimizing a weighted entropy under the constraint that the number of particles of each species, total momentum, and total energy are conserved. We prove that this minimization problem admits a unique solution for very general collision frequencies. Moreover, we prove that the model satisfies an H-Theorem and characterize the form of equilibrium.


2021 ◽  
Author(s):  
Sukhmander Singh ◽  
Ashish Tyagi ◽  
Bhavna Vidhani

The chapter is divided into two parts. In the first part, the chapter discusses the theory of propagation of electromagnetic waves in different media with the help of Maxwell’s equations of electromagnetic fields. The electromagnetic waves with low frequency are suitable for the communication in sea water and are illustrated with numerical examples. The underwater communication have been used for the oil (gas) field monitoring, underwater vehicles, coastline protection, oceanographic data collection, etc. The mathematical expression of penetration depth of electromagnetic waves is derived. The significance of penetration depth (skin depth) and loss angle are clarified with numerical examples. The interaction of electromagnetic waves with human tissue is also discussed. When an electric field is applied to a dielectric, the material takes a finite amount of time to polarize. The imaginary part of the permittivity is corresponds to the absorption length of radiation inside biological tissue. In the second part of the chapter, it has been shown that a high frequency wave can be generated through plasma under the presence of electron beam. The electron beam affects the oscillations of plasma and triggers the instability called as electron beam instability. In this section, we use magnetohydrodynamics theory to obtain the modified dispersion relation under the presence of electron beam with the help of the Poisson’s equation. The high frequency instability in plasma grow with the magnetic field, wave length, collision frequency and the beam density. The growth rate linearly increases with collision frequency of electrons but it is decreases with the drift velocity of electrons. The real frequency of the instability increases with magnetic field, azimuthal wave number and beam density. The real frequency is almost independent with the collision frequency of the electrons.


Sign in / Sign up

Export Citation Format

Share Document