scholarly journals The Theory of the Large Scale Structure of the Universe

1978 ◽  
Vol 79 ◽  
pp. 409-421 ◽  
Author(s):  
Ya B. Zeldovich

The God-father of psychoanalysis Professor Sigmund Freud taught us that the behaviour of adults depends on their early childhood experiences. in the same spirit, the problem of cosmological analysis is to derive the observed present day situation and structure of the Universe from certain plausible assumptions about its early behaviour. Perhaps the most important single statement about the large scale structure is that there is no structure at all on the largest scale − 1000 Mpc and more. On this scale the Universe is rather uniform, structureless and isotropically expanding - just according to the simplified pictures of Einstein-Friedmann……. Humason, Hubble…. Robertson, Walker. On the other hand there is a lot of structure on the scale of 100 or 50 Mpc and less. There are clusters and superclusters of galaxies.

Fractals ◽  
2003 ◽  
Vol 11 (supp01) ◽  
pp. 271-279 ◽  
Author(s):  
LUCIANO PIETRONERO ◽  
MAURIZIO BOTTACCIO ◽  
MARCO MONTUORI ◽  
FRANCESCO SYLOS LABINI

The study of the properties of cosmic structures in the universe is one of the most fascinating subject of the modern cosmology research. Far from being predicted, the large scale structure of the matter distribution is a very recent discovery, which continuosly exhibits new features and issues. We have faced such topic along two directions; from one side we have studied the correlation properties of the cosmic structures, that we have found substantially different from the commonly accepted ones. From the other side, we have studied the statistical properties of the very simplified system, in the attempt to capture the essential ingredients of the formation of the observed strucures.


2011 ◽  
Vol 54 (10) ◽  
pp. 983-1005 ◽  
Author(s):  
Vladimir N Lukash ◽  
Elena V Mikheeva ◽  
A M Malinovsky

Physics Today ◽  
1981 ◽  
Vol 34 (8) ◽  
pp. 62-63 ◽  
Author(s):  
P. J. E. Peebles ◽  
Simon D. M. White

1987 ◽  
Vol 124 ◽  
pp. 335-348
Author(s):  
Neta A. Bahcall

The evidence for the existence of very large scale structures, ∼ 100h−1Mpc in size, as derived from the spatial distribution of clusters of galaxies is summarized. Detection of a ∼ 2000 kms−1 elongation in the redshift direction in the distribution of the clusters is also described. Possible causes of the effect are peculiar velocities of clusters on scales of 10–100h−1Mpc and geometrical elongation of superclusters. If the effect is entirely due to the peculiar velocities of clusters, then superclusters have masses of order 1016.5M⊙ and may contain a larger amount of dark matter than previously anticipated.


1990 ◽  
Vol 43 (2) ◽  
pp. 159
Author(s):  
E Saar

Implications of the observed large scale structure on the physics of the early universe are described. A short review of Soviet work on the subject is given, and the present status of the fractal model of the large scale structure is discussed.


1990 ◽  
Vol 68 (9) ◽  
pp. 799-807
Author(s):  
Joseph Silk

Ever since the epoch of the spontaneous breaking of grand unification symmetry between the nuclear and electromagnetic interactions, the universe has expanded under the imprint of a spectrum of density fluctuations that is generally considered to have originated in this phase transition. I will discuss various possibilities for the form of the primordial fluctuation spectrum, spanning the range of adiabatic fluctuations, isocurvature fluctuations, and cosmic strings. Growth of the seed fluctuations by gravitational instability generates the formation of large-scale structures, from the scale of galaxies to that of clusters and superclusters of galaxies. There are three areas of confrontation with observational cosmology that will be reviewed. The large-scale distribution of the galaxies, including the apparent voids, sheets and filaments, and the coherent peculiar velocity field on scales of several tens of megaparsecs, probe the primordial fluctuation spectrum on scales that are only mildly nonlinear. Even larger scales are probed by study of the anisotropy of the cosmic microwave background radiation, which provides a direct glimpse of the primordial fluctuations that existed about 106 years or so after the initial big bang singularity. Galaxy formation is the process by which the building blocks of the universe have formed, involving a complex interaction between hydrodynamical and dynamical processes in a collapsing gas cloud. Both by detection of forming galaxies in the most remote regions of the universe and by study of the fundamental morphological characteristics of galaxies, which provide a fossilized memory of their past, can one relate the origin of galaxies to the same primordial fluctuation spectrum that gave rise' to the large-scale structure of the universe.


Sign in / Sign up

Export Citation Format

Share Document