Using a Chen-Stein identity to obtain low variance simulation estimators

Author(s):  
Sheldon M. Ross

Abstract This paper is concerned with developing low variance simulation estimators of probabilities related to the sum of Bernoulli random variables. It shows how to utilize an identity used in the Chen-Stein approach to bounding Poisson approximations to obtain low variance estimators. Applications and numerical examples in such areas as pattern occurrences, generalized coupon collecting, system reliability, and multivariate normals are presented. We also consider the problem of estimating the probability that a positive linear combination of Bernoulli random variables is greater than some specified value, and present a simulation estimator that is always less than the Markov inequality bound on that probability.

1996 ◽  
Vol 33 (01) ◽  
pp. 146-155 ◽  
Author(s):  
K. Borovkov ◽  
D. Pfeifer

In this paper we consider improvements in the rate of approximation for the distribution of sums of independent Bernoulli random variables via convolutions of Poisson measures with signed measures of specific type. As a special case, the distribution of the number of records in an i.i.d. sequence of length n is investigated. For this particular example, it is shown that the usual rate of Poisson approximation of O(1/log n) can be lowered to O(1/n 2). The general case is discussed in terms of operator semigroups.


1980 ◽  
Vol 12 (01) ◽  
pp. 200-221 ◽  
Author(s):  
B. Natvig

In this paper we arrive at a series of bounds for the availability and unavailability in the time interval I = [t A , t B ] ⊂ [0, ∞), for a coherent system of maintained, interdependent components. These generalize the minimal cut lower bound for the availability in [0, t] given in Esary and Proschan (1970) and also most bounds for the reliability at time t given in Bodin (1970) and Barlow and Proschan (1975). In the latter special case also some new improved bounds are given. The bounds arrived at are of great interest when trying to predict the performance process of the system. In particular, Lewis et al. (1978) have revealed the great need for adequate tools to treat the dependence between the random variables of interest when considering the safety of nuclear reactors. Satyanarayana and Prabhakar (1978) give a rapid algorithm for computing exact system reliability at time t. This can also be used in cases where some simpler assumptions on the dependence between the components are made. It seems, however, impossible to extend their approach to obtain exact results for the cases treated in the present paper.


2011 ◽  
Vol 02 (11) ◽  
pp. 1382-1386 ◽  
Author(s):  
Deepesh Bhati ◽  
Phazamile Kgosi ◽  
Ranganath Narayanacharya Rattihalli

2012 ◽  
Vol 433-440 ◽  
pp. 4908-4914 ◽  
Author(s):  
Ezzatallah Baloui Jamkhaneh ◽  
Azam Nozari

This paper proposes a new method for analyzing the fuzzy system reliability of a parallel-series and series-parallel systems using fuzzy confidence interval, where the reliability of each component of each system is unknown. To compute system reliability, we are estimated reliability of each component of the systems using fuzzy statistical data with both tools appropriate for modeling fuzzy data and suitable statistical methodology to handle these data. Numerical examples are given to compute fuzzy reliability and its cut set and the calculating was performed by using programming in software R.


Sign in / Sign up

Export Citation Format

Share Document