On a conjecture of Carter concerning irreducible Specht modules

Author(s):  
G. D. James

We study the question: Which ordinary irreducible representations of the symmetric group remain irreducible modulo a prime p?Let Sλ be the Specht module corresponding to the partition λ of n. The definition of Sλ is ‘independent of the field we are working over’. When the field has characteristic zero, Sλ is irreducible, and gives the ordinary irreducible representation of corresponding to the partition λ. Thus we are interested in the problem of whether or not Sλ is irreducible over a field of characteristic p.

10.37236/1619 ◽  
2001 ◽  
Vol 9 (1) ◽  
Author(s):  
Cheryl Grood

The wealth of beautiful combinatorics that arise in the representation theory of the symmetric group is well-known. In this paper, we analyze the representations of a related algebraic structure called the rook monoid from a combinatorial angle. In particular, we give a combinatorial construction of the irreducible representations of the rook monoid. Since the rook monoid contains the symmetric group, it is perhaps not surprising that the construction outlined in this paper is very similar to the classic combinatorial construction of the irreducible $S_n$-representations: namely, the Specht modules.


1987 ◽  
Vol 107 ◽  
pp. 63-68 ◽  
Author(s):  
George Kempf

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.


1958 ◽  
Vol 1 (1) ◽  
pp. 21-23 ◽  
Author(s):  
G. de B. Robinson

The relationship between the representation theory of the full linear group GL(d) of all non-singular linear transformations of degree d over a field of characteristic zero and that of the symmetric group Sn goes back to Schur and has been expounded by Weyl in his classical groups, [4; cf also 2 and 3]. More and more, the significance of continuous groups for modern physics is being pressed on the attention of mathematicians, and it seems worth recording a remark made to the author by Philip Hall in Edmonton.As is well known, the irreducible representations of Sn are obtainable from the Young diagrams [λ]=[λ1, λ2 ,..., λr] consisting of λ1 nodes in the first row, λ2 in the second row, etc., where λ1≥λ2≥ ... ≥λr and Σ λi = n. If we denote the jth node in the ith row of [λ] by (i,j) then those nodes to the right of and below (i,j), constitute, along with the (i,j) node itself, the (i,j)-hook of length hij.


10.37236/1925 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
C. M. Ballantine ◽  
R. C. Orellana

The Kronecker product of two Schur functions $s_{\lambda}$ and $s_{\mu}$, denoted $s_{\lambda}\ast s_{\mu}$, is defined as the Frobenius characteristic of the tensor product of the irreducible representations of the symmetric group indexed by partitions of $n$, $\lambda$ and $\mu$, respectively. The coefficient, $g_{\lambda,\mu,\nu}$, of $s_{\nu}$ in $s_{\lambda}\ast s_{\mu}$ is equal to the multiplicity of the irreducible representation indexed by $\nu$ in the tensor product. In this paper we give an algorithm for expanding the Kronecker product $s_{(n-p,p)}\ast s_{\lambda}$ if $\lambda_1-\lambda_2\geq 2p$. As a consequence of this algorithm we obtain a formula for $g_{(n-p,p), \lambda ,\nu}$ in terms of the Littlewood-Richardson coefficients which does not involve cancellations. Another consequence of our algorithm is that if $\lambda_1-\lambda_2\geq 2p$ then every Kronecker coefficient in $s_{(n-p,p)}\ast s_{\lambda}$ is independent of $n$, in other words, $g_{(n-p,p),\lambda,\nu}$ is stable for all $\nu$.


2019 ◽  
Vol 26 (01) ◽  
pp. 161-180
Author(s):  
Christos A. Pallikaros

We obtain alternative explicit Specht filtrations for the induced and the restricted Specht modules in the Hecke algebra of the symmetric group (defined over the ring A = ℤ[q1/2, q−1/2], where q is an indeterminate) using C-bases for these modules. Moreover, we provide a link between a certain C-basis for the induced Specht module and the notion of pairs of partitions.


1965 ◽  
Vol 17 ◽  
pp. 543-549 ◽  
Author(s):  
A. O. Morris

Let Γn be the representation group or spin group (9; 4) of the symmetric group Sn. Then the irreducible representations of Γn can be allocated into two classes which we shall call (i) ordinary representations, which are the irreducible representations of the symmetric group, and (ii) spin or projective representations.As is well known (3; 5), there is an ordinary irreducible representation [λ] corresponding to every partition (λ) = (λ1, λ2, . . . , λm) of n withλ1 ≥ λ2 ≥ . . . ≥ λm > 0.


1974 ◽  
Vol 26 (5) ◽  
pp. 1090-1097 ◽  
Author(s):  
A. J. van Zanten ◽  
E. de Vries

In this paper we consider representations of groups over the field of the complex numbers.The nth-Kronecker power σ⊗n of an irreducible representation σ of a group can be decomposed into the constituents of definite symmetry with respect to the symmetric group Sn. In the special case of the general linear group GL(N) in N dimensions the decomposition of the defining representation at once provides irreducible representations of GL(N) [9; 10; 11].


Author(s):  
A.V. Tushev

We develop some tecniques whish allow us to apply the methods of commutative algebra for studing the representations of nilpotent groups. Using these methods, in particular, we show that any irreducible representation of a finitely generated nilpotent group G over a finitely generated field of characteristic zero is induced from a primitive representation of some subgroup of G.


1971 ◽  
Vol 14 (1) ◽  
pp. 113-115 ◽  
Author(s):  
F. W. Lemire

Let L denote a finite-dimensional simple Lie algebra over an algebraically closed field K of characteristic zero. It is well known that every finite-dimension 1, irreducible representation of L admits a weight space decomposition; moreover every irreducible representation of L having at least one weight space admits a weight space decomposition.


Author(s):  
G. D. James

In the first half of this paper we introduce a new method of examining the q-hook structure of a Young diagram, and use it to prove most of the standard results about q-cores and q-quotients. In particular, we give a quick new proof of Chung's Conjecture (2), which determines the number of diagrams with a given q-weight and says how many of them are q-regular. In the case where q is prime, this tells us how many ordinary and q-modular irreducible representations of the symmetric group there are in a given q-block. None of the results of section 2 is original. In the next section we give a new definition, the p-power diagram, which is closely connected with the p-quotient. This concept is interesting because when p is prime a condition involving the p-power diagram appears to be a necessary and sufficient criterion for the diagram to be p-regular and the corresponding ordinary irreducible representation of to remain irreducible modulo p. In this paper we derive combinatorial results involving the p-power diagram, and in a later article we investigate the relevant representation theory.


Sign in / Sign up

Export Citation Format

Share Document