reductive group
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 55)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Lukas Braun

AbstractWe show that finitely generated Cox rings are Gorenstein. This leads to a refined characterization of varieties of Fano type: they are exactly those projective varieties with Gorenstein canonical quasicone Cox ring. We then show that for varieties of Fano type and Kawamata log terminal quasicones X, iteration of Cox rings is finite with factorial master Cox ring. In particular, even if the class group has torsion, we can express such X as quotients of a factorial canonical quasicone by a solvable reductive group.


Author(s):  
Stefania Trentin ◽  
Eva Viehmann

AbstractWe consider the Newton stratification on Iwahori double cosets for a connected reductive group. We prove the existence of Newton strata whose closures cannot be expressed as a union of strata, and show how this is implied by the existence of non-equidimensional affine Deligne–Lusztig varieties. We also give an explicit example for a group of type $$A_4$$ A 4 .


2021 ◽  
pp. 1-9
Author(s):  
LEONARDO BILIOTTI ◽  
OLUWAGBENGA JOSHUA WINDARE

Abstract We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of a compact connected Lie group U with Lie algebra $\mathfrak {u}$ extends holomorphically to an action of the complexified group $U^{\mathbb {C}}$ and that the U-action on Z is Hamiltonian. If $G\subset U^{\mathbb {C}}$ is compatible, there exists a gradient map $\mu _{\mathfrak p}:X \longrightarrow \mathfrak p$ where $\mathfrak g=\mathfrak k \oplus \mathfrak p$ is a Cartan decomposition of $\mathfrak g$ . In this paper, we describe compact orbits of parabolic subgroups of G in terms of the gradient map $\mu _{\mathfrak p}$ .


2021 ◽  
Vol 157 (12) ◽  
pp. 2733-2746
Author(s):  
Jessica Fintzen

Let $F$ be a non-archimedean local field of residual characteristic $p \neq 2$ . Let $G$ be a (connected) reductive group over $F$ that splits over a tamely ramified field extension of $F$ . We revisit Yu's construction of smooth complex representations of $G(F)$ from a slightly different perspective and provide a proof that the resulting representations are supercuspidal. We also provide a counterexample to Proposition 14.1 and Theorem 14.2 in Yu [Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), 579–622], whose proofs relied on a typo in a reference.


Author(s):  
Bernhard Krötz ◽  
Job J. Kuit ◽  
Eric M. Opdam ◽  
Henrik Schlichtkrull

Abstract We explain by elementary means why the existence of a discrete series representation of a real reductive group G implies the existence of a compact Cartan subgroup of G. The presented approach has the potential to generalize to real spherical spaces.


2021 ◽  
Vol 25 (29) ◽  
pp. 844-860
Author(s):  
Lucas Mason-Brown

In this paper, we construct and classify the special unipotent representations of a real reductive group attached to the principal nilpotent orbit. We give formulas for the K \mathbf {K} -types, associated varieties, and Langlands parameters of all such representations.


2021 ◽  
Vol 157 (10) ◽  
pp. 2215-2241
Author(s):  
Robert Cass

Abstract Let $G$ be a split connected reductive group over a finite field of characteristic $p > 2$ such that $G_\text {der}$ is absolutely almost simple. We give a geometric construction of perverse $\mathbb {F}_p$ -sheaves on the Iwahori affine flag variety of $G$ which are central with respect to the convolution product. We deduce an explicit formula for an isomorphism from the spherical mod $p$ Hecke algebra to the center of the Iwahori mod $p$ Hecke algebra. We also give a formula for the central integral Bernstein elements in the Iwahori mod $p$ Hecke algebra. To accomplish these goals we construct a nearby cycles functor for perverse $\mathbb {F}_p$ -sheaves and we use Frobenius splitting techniques to prove some properties of this functor. We also prove that certain equal characteristic analogues of local models of Shimura varieties are strongly $F$ -regular, and hence they are $F$ -rational and have pseudo-rational singularities.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Amit Kulshrestha ◽  
Rijubrata Kundu ◽  
Anupam Singh

Abstract Let 𝐺 be a connected reductive group defined over F q \mathbb{F}_{q} . Fix an integer M ≥ 2 M\geq 2 , and consider the power map x ↦ x M x\mapsto x^{M} on 𝐺. We denote the image of G ⁢ ( F q ) G(\mathbb{F}_{q}) under this map by G ⁢ ( F q ) M G(\mathbb{F}_{q})^{M} and estimate what proportion of regular semisimple, semisimple and regular elements of G ⁢ ( F q ) G(\mathbb{F}_{q}) it contains. We prove that, as q → ∞ q\to\infty , the set of limits for each of these proportions is the same and provide a formula. This generalizes the well-known results for M = 1 M=1 where all the limits take the same value 1. We also compute this more explicitly for the groups GL ⁢ ( n , q ) \mathrm{GL}(n,q) and U ⁢ ( n , q ) \mathrm{U}(n,q) and show that the set of limits are the same for these two group, in fact, in bijection under q ↦ - q q\mapsto-q for a fixed 𝑀.


Author(s):  
Visu Makam ◽  
Avi Wigderson

Abstract The following multi-determinantal algebraic variety plays a central role in algebra, algebraic geometry and computational complexity theory: SING n , m {{\rm SING}_{n,m}} , consisting of all m-tuples of n × n {n\times n} complex matrices which span only singular matrices. In particular, an efficient deterministic algorithm testing membership in SING n , m {{\rm SING}_{n,m}} will imply super-polynomial circuit lower bounds, a holy grail of the theory of computation. A sequence of recent works suggests such efficient algorithms for memberships in a general class of algebraic varieties, namely the null cones of linear group actions. Can this be used for the problem above? Our main result is negative: SING n , m {{\rm SING}_{n,m}} is not the null cone of any (reductive) group action! This stands in stark contrast to a non-commutative analog of this variety, and points to an inherent structural difficulty of SING n , m {{\rm SING}_{n,m}} . To prove this result, we identify precisely the group of symmetries of SING n , m {{\rm SING}_{n,m}} . We find this characterization, and the tools we introduce to prove it, of independent interest. Our work significantly generalizes a result of Frobenius for the special case m = 1 {m=1} , and suggests a general method for determining the symmetries of algebraic varieties.


Author(s):  
Yeansu Kim ◽  
Loren Spice ◽  
Sandeep Varma

Abstract Let ${\text G}$ be a reductive group over a $p$-adic field $F$ of characteristic zero, with $p \gg 0$, and let $G={\text G}(F)$. In [ 15], J.-L. Kim studied an equivalence relation called weak associativity on the set of unrefined minimal $K$-types for ${\text G}$ in the sense of A. Moy and G. Prasad. Following [ 15], we attach to the set $\overline{\mathfrak{s}}$ of good $K$-types in a weak associate class of positive-depth unrefined minimal $K$-types a ${G}$-invariant open and closed subset $\mathfrak{g}_{\overline{\mathfrak{s}}}$ of the Lie algebra $\mathfrak{g} = {\operatorname{Lie}}({\text G})(F)$, and a subset $\tilde{{G}}_{\overline{\mathfrak{s}}}$ of the admissible dual $\tilde{{G}}$ of ${G}$ consisting of those representations containing an unrefined minimal $K$-type that belongs to $\overline{\mathfrak{s}}$. Then $\tilde{{G}}_{\overline{\mathfrak{s}}}$ is the union of finitely many Bernstein components of ${G}$, so that we can consider the Bernstein projector $E_{\overline{\mathfrak{s}}}$ that it determines. We show that $E_{\overline{\mathfrak{s}}}$ vanishes outside the Moy–Prasad ${G}$-domain ${G}_r \subset{G}$, and reformulate a result of Kim as saying that the restriction of $E_{\overline{\mathfrak{s}}}$ to ${G}_r\,$, pushed forward via the logarithm to the Moy–Prasad ${G}$-domain $\mathfrak{g}_r \subset \mathfrak{g}$, agrees on $\mathfrak{g}_r$ with the inverse Fourier transform of the characteristic function of $\mathfrak{g}_{\overline{\mathfrak{s}}}$. This is a variant of one of the descriptions given by R. Bezrukavnikov, D. Kazhdan, and Y. Varshavsky in [8] for the depth-$r$ Bernstein projector.


Sign in / Sign up

Export Citation Format

Share Document