scholarly journals A decomposition formula for representations

1987 ◽  
Vol 107 ◽  
pp. 63-68 ◽  
Author(s):  
George Kempf

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.

2019 ◽  
Vol 236 ◽  
pp. 251-310 ◽  
Author(s):  
MARC LEVINE

This paper examines Euler characteristics and characteristic classes in the motivic setting. We establish a motivic version of the Becker–Gottlieb transfer, generalizing a construction of Hoyois. Making calculations of the Euler characteristic of the scheme of maximal tori in a reductive group, we prove a generalized splitting principle for the reduction from $\operatorname{GL}_{n}$ or $\operatorname{SL}_{n}$ to the normalizer of a maximal torus (in characteristic zero). Ananyevskiy’s splitting principle reduces questions about characteristic classes of vector bundles in $\operatorname{SL}$-oriented, $\unicode[STIX]{x1D702}$-invertible theories to the case of rank two bundles. We refine the torus-normalizer splitting principle for $\operatorname{SL}_{2}$ to help compute the characteristic classes in Witt cohomology of symmetric powers of a rank two bundle, and then generalize this to develop a general calculus of characteristic classes with values in Witt cohomology.


1988 ◽  
Vol 40 (3) ◽  
pp. 633-648 ◽  
Author(s):  
George Kempf ◽  
Linda Ness

Let G be a reductive group over a field of characteristic zero. Fix a Borel subgroup B of G which contains a maximal torus T. For each dominant weight X we have an irreducible representation V(X) of G with highest weight X. For two dominant representation X1 and X2 we have a decompositionThis decomposition is determined by the elementof the group ring of the group of characters of T.The objective of this paper is to compute r(X1, X2) for all pairs X1 and X2 of fundamental weights. This will be used to compute the equations for cones over homogeneous spaces. This problem immediately reduces to the case when G has simple type; An, Bn, Cn, Dn, E6, E7, E8, F4 and G2. We will give complete details for the classical types. For the case An we will work with GLn.


2017 ◽  
Vol 154 (1) ◽  
pp. 36-79
Author(s):  
Gergely Bérczi

Let $G$ be a reductive group over an algebraically closed subfield $k$ of $\mathbb{C}$ of characteristic zero, $H\subseteq G$ an observable subgroup normalised by a maximal torus of $G$ and $X$ an affine $k$-variety acted on by $G$. Popov and Pommerening conjectured in the late 1970s that the invariant algebra $k[X]^{H}$ is finitely generated. We prove the conjecture for: (1) subgroups of $\operatorname{SL}_{n}(k)$ closed under left (or right) Borel action and for: (2) a class of Borel regular subgroups of classical groups. We give a partial affirmative answer to the conjecture for general regular subgroups of $\operatorname{SL}_{n}(k)$.


Author(s):  
G. D. James

We study the question: Which ordinary irreducible representations of the symmetric group remain irreducible modulo a prime p?Let Sλ be the Specht module corresponding to the partition λ of n. The definition of Sλ is ‘independent of the field we are working over’. When the field has characteristic zero, Sλ is irreducible, and gives the ordinary irreducible representation of corresponding to the partition λ. Thus we are interested in the problem of whether or not Sλ is irreducible over a field of characteristic p.


2012 ◽  
Vol 55 (4) ◽  
pp. 673-688 ◽  
Author(s):  
Avraham Aizenbud ◽  
Dmitry Gourevitch

AbstractLet F be a non-Archimedean local field or a finite field. Let n be a natural number and k be 1 or 2. Consider G := GLn+k(F) and let M := GLn(F) × GLk(F) < G be a maximal Levi subgroup. Let U < G be the corresponding unipotent subgroup and let P = MU be the corresponding parabolic subgroup. Let be the Jacquet functor, i.e., the functor of coinvariants with respect toU. In this paper we prove that J is a multiplicity free functor, i.e., dim HomM(J(π), ρ) ≤ 1, for any irreducible representations π of G and ρ of M. We adapt the classical method of Gelfand and Kazhdan, which proves the “multiplicity free” property of certain representations to prove the “multiplicity free” property of certain functors. At the end we discuss whether other Jacquet functors are multiplicity free.


1987 ◽  
Vol 39 (1) ◽  
pp. 149-167 ◽  
Author(s):  
Laurent Clozel

In this paper, we extend to non-connected, reductive groups over p-adic field of characteristic zero Harish-Chandra's theorem on the local integrability of characters.Harish-Chandra's theorem states that the distribution character of an admissible, irreducible representation of a (connected) reductive p-adic group is locally integrable. We show that this extends to any reductive group; just as in the connected case, one even gets a very precise control over the singularities of the character along the singular elements.As will be seen, the proof in the non-connected case is an easy extension of Harish-Chandra's. The reader may wonder why we have bothered to write its generalization completely. The reason is that the original article [8] does not contain proofs for the crucial lemmas, and this makes it impossible to explain why the theorem extends. Because this result is needed for work of Arthur and the author on base change, it has been thought necessary to give complete arguments.


Author(s):  
A.V. Tushev

We develop some tecniques whish allow us to apply the methods of commutative algebra for studing the representations of nilpotent groups. Using these methods, in particular, we show that any irreducible representation of a finitely generated nilpotent group G over a finitely generated field of characteristic zero is induced from a primitive representation of some subgroup of G.


Author(s):  
DIPENDRA PRASAD ◽  
NILABH SANAT

Let G be a connected split reductive group defined over a finite field [ ]q, and G([ ]q) the group of [ ]q-rational points of G. For each maximal torus T of G defined over [ ]q and a complex linear character θ of T([ ]q), let RGT(θ) be the generalized representation of G([ ]q) defined in [DL]. It can be seen that the conjugacy classes in the Weyl group W of G are in one-to-one correspondence with the conjugacy classes of maximal tori defined over [ ]q in G ([C1, 3·3·3]). Let c be the Coxeter conjugacy class of W, and let Tc be the corresponding maximal torus. Then by [DL] we know that πθ = (−1)nRGTc(θ) (where n is the semisimple rank of G and θ is a character in ‘general position’) is an irreducible cuspidal representation of G([ ]q). The results of this paper generalize the pattern about the dimensions of cuspidal representations of GL(n, [ ]q) as an alternating sum of the dimensions of certain irreducible representations of GL(n, [ ]q) appearing in the space of functions on the flag variety of GL(n, [ ]q) as shown in the table below.


1971 ◽  
Vol 14 (1) ◽  
pp. 113-115 ◽  
Author(s):  
F. W. Lemire

Let L denote a finite-dimensional simple Lie algebra over an algebraically closed field K of characteristic zero. It is well known that every finite-dimension 1, irreducible representation of L admits a weight space decomposition; moreover every irreducible representation of L having at least one weight space admits a weight space decomposition.


2021 ◽  
Vol 25 (21) ◽  
pp. 606-643
Author(s):  
Yury Neretin

We classify irreducible unitary representations of the group of all infinite matrices over a p p -adic field ( p ≠ 2 p\ne 2 ) with integer elements equipped with a natural topology. Any irreducible representation passes through a group G L GL of infinite matrices over a residue ring modulo p k p^k . Irreducible representations of the latter group are induced from finite-dimensional representations of certain open subgroups.


Sign in / Sign up

Export Citation Format

Share Document