Bounded geodesics and Hausdorff dimension

1994 ◽  
Vol 116 (3) ◽  
pp. 505-511 ◽  
Author(s):  
C. S. Aravinda

Let M be a Riemannian manifold of constant negative curvature and finite Riemannian volume. It is well-known that the geodesic flow on the unit tangent bundle SM of M is ergodic. In particular, it follows that for almost all (p, v)∈ SM, where p ∈M and v is a unit tangent vector at p, the geodesic through p in the direction of v is dense in M. A theorem of Dani [Dl] says that the set of all (p, v)∈SM for which the corresponding geodesic is bounded (namely those with compact closure in M) is ‘large’ in the sense that its Hausdorff dimension is equal to that of the unit tangent bundle itself. In fact, Dani generalized this result to a more general algebraic situation (cf. [D2]).

1993 ◽  
Vol 13 (2) ◽  
pp. 335-347 ◽  
Author(s):  
Héctor Sánchez-Morgado

AbstractFried has related closed orbits of the geodesic flow of a surface S of constant negative curvature to the R-torsion for a unitary representation of the fundamental group of the unit tangent bundle T1S. In this paper we extend those results to transitive Anosov flows and 2-dimensional attractors on 3-manifolds.


1991 ◽  
Vol 11 (4) ◽  
pp. 653-686 ◽  
Author(s):  
Renato Feres

AbstractWe improve and extend a result due to M. Kanai about rigidity of geodesic flows on closed Riemannian manifolds of negative curvature whose stable or unstable horospheric foliation is smooth. More precisely, the main results proved here are: (1) Let M be a closed C∞ Riemannian manifold of negative sectional curvature. Assume the stable or unstable foliation of the geodesic flow φt: V → V on the unit tangent bundle V of M is C∞. Assume, moreover, that either (a) the sectional curvature of M satisfies −4 < K ≤ −1 or (b) the dimension of M is odd. Then the geodesic flow of M is C∞-isomorphic (i.e., conjugate under a C∞ diffeomorphism between the unit tangent bundles) to the geodesic flow on a closed Riemannian manifold of constant negative curvature. (2) For M as above, assume instead of (a) or (b) that dim M ≡ 2(mod 4). Then either the above conclusion holds or φ1, is C∞-isomorphic to the flow , on the quotient Γ\, where Γ is a subgroup of a real Lie group ⊂ Diffeo () with Lie algebra is the geodesic flow on the unit tangent bundle of the complex hyperbolic space ℂHm, m = ½ dim M.


1982 ◽  
Vol 2 (3-4) ◽  
pp. 465-489 ◽  
Author(s):  
Marina Ratner

AbstractWe classify up to an isomorphism all factors of the classical horocycle flow on the unit tangent bundle of a surface of constant negative curvature with finite volume.


1989 ◽  
Vol 9 (3) ◽  
pp. 455-464 ◽  
Author(s):  
Ursula Hamenstädt

AbstractThe Bowen-Margulis measure on the unit tangent bundle of the universal covering of a compact manifold of negative curvature is determined by its restriction to the leaves of the strong unstable foliation. We describe this restriction to any strong unstable manifold W as a spherical measure with respect to a natural distance on W.


2001 ◽  
Vol 25 (3) ◽  
pp. 183-195 ◽  
Author(s):  
Vasile Oproiu

We obtain a Kähler Einstein structure on the tangent bundle of a Riemannian manifold of constant negative curvature. Moreover, the holomorphic sectional curvature of this Kähler Einstein structure is constant. Similar results are obtained for a tube around zero section in the tangent bundle, in the case of the Riemannian manifolds of constant positive curvature.


1994 ◽  
Vol 14 (3) ◽  
pp. 493-514
Author(s):  
Ursula Hamenstädt

AbstractIt is shown that three different notions of regularity for the stable foliation on the unit tangent bundle of a compact manifold of negative curvature are equivalent. Moreover if is a time-preserving conjugacy of geodesic flows of such manifolds M, N then the Lyapunov exponents at corresponding periodic points of the flows coincide. In particular Δ also preserves the Lebesgue measure class.


1991 ◽  
Vol 02 (06) ◽  
pp. 701-709
Author(s):  
SVETLANA KATOK

In this paper we study the space of smooth functions on the unit tangent bundle SM to a compact negatively curved surface M that are eigenfunctions of the infinitesimal generator of the action of SO(2) on SM, and that have zero integrals over all periodic orbits of the geodesic flow on SM. It is proved that the space of such functions is finite dimensional. In the case of constant negative curvature a complete description of this space is obtained.


1998 ◽  
Vol 18 (2) ◽  
pp. 373-396 ◽  
Author(s):  
DMITRY Y. KLEINBOCK

Let $F$ be a nonquasi-unipotent one-parameter (cyclic) subgroup of a unimodular Lie group $G$, $\Gamma$ a discrete subgroup of $G$. We prove that for certain classes of subsets $Z$ of the homogeneous space $G/\Gamma$, the set of points in $G/\Gamma$ with $F$-orbits staying away from $Z$ has full Hausdorff dimension. From this we derive applications to geodesic flows on manifolds of constant negative curvature.


2021 ◽  
pp. 1-10
Author(s):  
ALINE CERQUEIRA ◽  
CARLOS G. MOREIRA ◽  
SERGIO ROMAÑA

Abstract Let $g_0$ be a smooth pinched negatively curved Riemannian metric on a complete surface N, and let $\Lambda _0$ be a basic hyperbolic set of the geodesic flow of $g_0$ with Hausdorff dimension strictly smaller than two. Given a small smooth perturbation g of $g_0$ and a smooth real-valued function f on the unit tangent bundle to N with respect to g, let $L_{g,\Lambda ,f}$ (respectively $M_{g,\Lambda ,f}$ ) be the Lagrange (respectively Markov) spectrum of asymptotic highest (respectively highest) values of f along the geodesics in the hyperbolic continuation $\Lambda $ of $\Lambda _0$ . We prove that for generic choices of g and f, the Hausdorff dimensions of the sets $L_{g,\Lambda , f}\cap (-\infty , t)$ vary continuously with $t\in \mathbb {R}$ and, moreover, $M_{g,\Lambda , f}\cap (-\infty , t)$ has the same Hausdorff dimension as $L_{g,\Lambda , f}\cap (-\infty , t)$ for all $t\in \mathbb {R}$ .


2017 ◽  
Vol 39 (5) ◽  
pp. 1401-1439 ◽  
Author(s):  
LEI YANG

In this paper, we consider the product space of several non-compact finite-volume hyperbolic spaces, $V_{1},V_{2},\ldots ,V_{k}$ of dimension $n$. Let $\text{T}^{1}(V_{i})$ denote the unit tangent bundle of $V_{i}$ and $g_{t}$ denote the geodesic flow on $\text{T}^{1}(V_{i})$ for each $i=1,\ldots ,k$. We define $$\begin{eqnarray}{\mathcal{D}}_{k}:=\{(v_{1},\ldots ,v_{k})\,\in \,\text{T}^{1}(V_{1})\times \cdots \times \text{T}^{1}(V_{k})\,:\,(g_{t}(v_{1}),\ldots ,g_{t}(v_{k}))\text{ diverges as }t\rightarrow \infty \}.\end{eqnarray}$$ We will prove that the Hausdorff dimension of ${\mathcal{D}}_{k}$ is equal to $k(2n-1)-((n-1)/2)$. This extends a result of Cheung.


Sign in / Sign up

Export Citation Format

Share Document