On thep-part of the Birch–Swinnerton-Dyer conjecture for elliptic curves with complex multiplication by the ring of integers of

Author(s):  
YUKAKO KEZUKA

AbstractWe study infinite families of quadratic and cubic twists of the elliptic curveE=X0(27). For the family of quadratic twists, we establish a lower bound for the 2-adic valuation of the algebraic part of the value of the complexL-series ats=1, and, for the family of cubic twists, we establish a lower bound for the 3-adic valuation of the algebraic part of the sameL-value. We show that our lower bounds are precisely those predicted by the celebrated conjecture of Birch and Swinnerton-Dyer.

2018 ◽  
Vol 168 (1) ◽  
pp. 197-209 ◽  
Author(s):  
SHUAI ZHAI

AbstractIn this paper, we investigate the weak forms of the 2-part of the conjecture of Birch and Swinnerton-Dyer, and prove a lower bound for the 2-adic valuation of the algebraic part of the central value of the complex L-series for the family of quadratic twists of all optimal elliptic curves over ${\mathbb Q}$.


2015 ◽  
Vol 219 ◽  
pp. 269-302
Author(s):  
Kenichi Bannai ◽  
Hidekazu Furusho ◽  
Shinichi Kobayashi

AbstractConsider an elliptic curve defined over an imaginary quadratic fieldKwith good reduction at the primes abovep≥ 5 and with complex multiplication by the full ring of integersof K. In this paper, we constructp-adic analogues of the Eisenstein-Kronecker series for such an elliptic curve as Coleman functions on the elliptic curve. We then provep-adic analogues of the first and second Kronecker limit formulas by using the distribution relation of the Kronecker theta function.


2004 ◽  
Vol 56 (1) ◽  
pp. 194-208
Author(s):  
A. Saikia

AbstractSuppose K is an imaginary quadratic field and E is an elliptic curve over a number field F with complex multiplication by the ring of integers in K. Let p be a rational prime that splits as in K. Let Epn denote the pn-division points on E. Assume that F(Epn) is abelian over K for all n ≥ 0. This paper proves that the Pontrjagin dual of the -Selmer group of E over F(Ep∞) is a finitely generated free Λ-module, where Λ is the Iwasawa algebra of . It also gives a simple formula for the rank of the Pontrjagin dual as a Λ-module.


Author(s):  
Wan Lee ◽  
Myungjun Yu

Let [Formula: see text] be an elliptic curve defined over a number field [Formula: see text]. Suppose that [Formula: see text] has complex multiplication over [Formula: see text], i.e. [Formula: see text] is an imaginary quadratic field. With the aid of CM theory, we find elliptic curves whose quadratic twists have a constant root number.


2015 ◽  
Vol 219 ◽  
pp. 269-302
Author(s):  
Kenichi Bannai ◽  
Hidekazu Furusho ◽  
Shinichi Kobayashi

AbstractConsider an elliptic curve defined over an imaginary quadratic field K with good reduction at the primes above p ≥ 5 and with complex multiplication by the full ring of integers of K. In this paper, we construct p-adic analogues of the Eisenstein-Kronecker series for such an elliptic curve as Coleman functions on the elliptic curve. We then prove p-adic analogues of the first and second Kronecker limit formulas by using the distribution relation of the Kronecker theta function.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Matteo Verzobio

AbstractLet P and Q be two points on an elliptic curve defined over a number field K. For $$\alpha \in {\text {End}}(E)$$ α ∈ End ( E ) , define $$B_\alpha $$ B α to be the $$\mathcal {O}_K$$ O K -integral ideal generated by the denominator of $$x(\alpha (P)+Q)$$ x ( α ( P ) + Q ) . Let $$\mathcal {O}$$ O be a subring of $${\text {End}}(E)$$ End ( E ) , that is a Dedekind domain. We will study the sequence $$\{B_\alpha \}_{\alpha \in \mathcal {O}}$$ { B α } α ∈ O . We will show that, for all but finitely many $$\alpha \in \mathcal {O}$$ α ∈ O , the ideal $$B_\alpha $$ B α has a primitive divisor when P is a non-torsion point and there exist two endomorphisms $$g\ne 0$$ g ≠ 0 and f so that $$f(P)= g(Q)$$ f ( P ) = g ( Q ) . This is a generalization of previous results on elliptic divisibility sequences.


Author(s):  
Joachim Petit

Abstract We investigate the number of curves having a rational point of almost minimal height in the family of quadratic twists of a given elliptic curve. This problem takes its origin in the work of Hooley, who asked this question in the setting of real quadratic fields. In particular, he showed an asymptotic estimate for the number of such fields with almost minimal fundamental unit. Our main result establishes the analogue asymptotic formula in the setting of quadratic twists of a fixed elliptic curve.


2014 ◽  
Vol 150 (7) ◽  
pp. 1077-1106 ◽  
Author(s):  
Zev Klagsbrun ◽  
Barry Mazur ◽  
Karl Rubin

AbstractWe study the distribution of 2-Selmer ranks in the family of quadratic twists of an elliptic curve $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}E$ over an arbitrary number field $K$. Under the assumption that ${\rm Gal}(K(E[2])/K) \ {\cong }\ S_3$, we show that the density (counted in a nonstandard way) of twists with Selmer rank $r$ exists for all positive integers $r$, and is given via an equilibrium distribution, depending only on a single parameter (the ‘disparity’), of a certain Markov process that is itself independent of $E$ and $K$. More generally, our results also apply to $p$-Selmer ranks of twists of two-dimensional self-dual ${\bf F}_p$-representations of the absolute Galois group of $K$ by characters of order $p$.


2005 ◽  
Vol 48 (1) ◽  
pp. 16-31 ◽  
Author(s):  
Alina Carmen Cojocaru ◽  
Ernst Kani

AbstractLet E be an elliptic curve defined over ℚ, of conductor N and without complex multiplication. For any positive integer l, let ϕl be the Galois representation associated to the l-division points of E. From a celebrated 1972 result of Serre we know that ϕl is surjective for any sufficiently large prime l. In this paper we find conditional and unconditional upper bounds in terms of N for the primes l for which ϕl is not surjective.


2018 ◽  
Vol 2020 (24) ◽  
pp. 10005-10041 ◽  
Author(s):  
Yuri Bilu ◽  
Philipp Habegger ◽  
Lars Kühne

Abstract A result of the 2nd-named author states that there are only finitely many complex multiplication (CM)-elliptic curves over $\mathbb{C}$ whose $j$-invariant is an algebraic unit. His proof depends on Duke’s equidistribution theorem and is hence noneffective. In this article, we give a completely effective proof of this result. To be precise, we show that every singular modulus that is an algebraic unit is associated with a CM-elliptic curve whose endomorphism ring has discriminant less than $10^{15}$. Through further refinements and computer-assisted arguments, we eventually rule out all remaining cases, showing that no singular modulus is an algebraic unit. This allows us to exhibit classes of subvarieties in ${\mathbb{C}}^n$ not containing any special points.


Sign in / Sign up

Export Citation Format

Share Document