scholarly journals Derived equivalent threefolds, algebraic representatives, and the coniveau filtration

2018 ◽  
Vol 167 (01) ◽  
pp. 123-131 ◽  
Author(s):  
JEFFREY D. ACHTER ◽  
SEBASTIAN CASALAINA-MARTIN ◽  
CHARLES VIAL

AbstractA conjecture of Orlov predicts that derived equivalent smooth projective varieties over a field have isomorphic Chow motives. The conjecture is known for curves, and was recently observed for surfaces by Huybrechts. In this paper we focus on threefolds over perfect fields, and unconditionally secure results, which are implied by Orlov's conjecture, concerning the geometric coniveau filtration, and abelian varieties attached to smooth projective varieties.

2018 ◽  
Vol 2020 (7) ◽  
pp. 1942-1956
Author(s):  
Davide Lombardo ◽  
Andrea Maffei

Abstract We determine which complex abelian varieties can be realized as the automorphism group of a smooth projective variety.


Author(s):  
Abolfazl Mohajer

AbstractIn this paper, using a generalization of the notion of Prym variety for covers of projective varieties, we prove a structure theorem for the Mordell–Weil group of abelian varieties over function fields that are twists of abelian varieties by Galois covers of smooth projective varieties. In particular, the results we obtain contribute to the construction of Jacobians of high rank.


2007 ◽  
Vol 50 (2) ◽  
pp. 161-171 ◽  
Author(s):  
Donu Arapura ◽  
Su-Jeong Kang

AbstractIt is shown that the coniveau filtration on the cohomology of smooth projective varieties is preserved up to shift by pushforwards, pullbacks and products.


2019 ◽  
pp. 1-17
Author(s):  
KIRTI JOSHI

In this article, I give a crystalline characterization of abelian varieties amongst the class of smooth projective varieties with trivial tangent bundles in characteristic $p>0$ . Using my characterization, I show that a smooth, projective, ordinary variety with trivial tangent bundle is an abelian variety if and only if its second crystalline cohomology is torsion-free. I also show that a conjecture of KeZheng Li about smooth projective varieties with trivial tangent bundles in characteristic $p>0$ is true for smooth projective surfaces. I give a new proof of a result by Li and prove a refinement of it. Based on my characterization of abelian varieties, I propose modifications of Li’s conjecture, which I expect to be true.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Indranil Biswas ◽  
Sebastian Heller ◽  
Laura P. Schaposnik

2016 ◽  
Vol 220 (9) ◽  
pp. 3307-3326 ◽  
Author(s):  
Enrique Arrondo ◽  
Simone Marchesi ◽  
Helena Soares

2018 ◽  
Vol 14 (10) ◽  
pp. 2673-2685
Author(s):  
Kaoru Sano

We provide an explicit formula on the growth rate of ample heights of rational points under iteration of endomorphisms of smooth projective varieties over number fields. As an application, we give a positive answer to a variant of the Dynamical Mordell–Lang conjecture for pairs of étale endomorphisms, which is also a variant of the original one stated by Bell, Ghioca, and Tucker in their monograph.


2017 ◽  
Vol 60 (3) ◽  
pp. 490-509
Author(s):  
Andrew Fiori

AbstractWe prove an analogue of the Riemann–Hurwitz theorem for computing Euler characteristics of pullbacks of coherent sheaves through finite maps of smooth projective varieties in arbitrary dimensions, subject only to the condition that the irreducible components of the branch and ramification locus have simple normal crossings.


2002 ◽  
Vol 13 (01) ◽  
pp. 43-65 ◽  
Author(s):  
MARKUS WESSLER

This paper generalizes the geometric part of the Esnault–Viehweg paper on Dyson's Lemma for a product of projective lines. Using the method of weak positivity from algebraic geometry, we are able to study products of smooth projective varieties of arbitrary dimension and to prove a geometric analogue of Dyson's Lemma for this case. Our main result is in fact a quantitative version of Faltings' product theorem.


Sign in / Sign up

Export Citation Format

Share Document