scholarly journals Positive solutions of some quasilinear singular second order equations

2004 ◽  
Vol 76 (1) ◽  
pp. 125-140 ◽  
Author(s):  
J. V. Goncalves ◽  
C. A. P. Santos

AbstractIn this paper we study the existence and uniqueness of positive solutions of boundary vlue problems for continuous semilinear perturbations, say f: [0, 1) × (0, ∞) → (0, ∞), of class of quasilinear operators which represent, for instance, the radial form of the Dirichlet problem on the unit ball of RN for the operators: p-Laplacian (1 < p < ∞) ad k-Hessian (1 ≤ k ≤ N). As a key feature, f (r, u) is possibly singular at r = 1 or u =0, Our approach exploits fixed point arguments and the Shooting Method.

2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Lingling Zhang ◽  
Chengbo Zhai

Using a new fixed point theorem of generalized concave operators, we present in this paper criteria which guarantee the existence and uniqueness of positive solutions to nonlinear two-point boundary value problems for second-order impulsive differential equations with concave or convex nonlinearities.


2018 ◽  
Vol 37 (4) ◽  
pp. 153-172
Author(s):  
Robab Alikhani ◽  
Fariba Bahrani

In this paper, we prove the existence and uniqueness of global solution for second order interval valued integrodifferential equation with initial conditions admitting only the existence of a lower solution or an upper solution. In this study, in order to make the global solution on entire $[0,b]$, we use a fixed point in partially ordered sets on the subintervals of $[0,b]$ and obtain local solutions. Also, under weak conditions we show being well-defined a special kind of  H-difference involved in this work. Moreover, we compare the results of existence and uniqueness under consideration of two kind of partial ordering on fuzzy numbers.


Author(s):  
Donal O'Regan

AbstractExistence principles are given for systems of differential equations with reflection of the argument. These are derived using fixed point analysis, specifically the Nonlinear Alternative. Then existence results are deduced for certain classes of first and second order equations with reflection of the argument.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yan Wang ◽  
Lan Li

We firstly introduce the concept and the properties ofCmalmost periodic functions on time scales, which generalizes the concept of almost periodic functions on time scales and the concept ofC(n)-almost periodic functions. Secondly, we consider the existence and uniqueness of almost periodic solutions for second order dynamic equations on time scales by Schauder’s fixed point theorem and contracting mapping principle. At last, we obtain alternative theorems for second order dynamic equations on time scales.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chen Yang ◽  
Jieming Zhang

We are concerned with the existence and uniqueness of positive solutions for the following nonlinear perturbed fractional two-point boundary value problem:D0+αu(t)+f(t,u,u',…,u(n-2))+g(t)=0, 0<t<1, n-1<α≤n, n≥2,u(0)=u'(0)=⋯=u(n-2)(0)=u(n-2)(1)=0, whereD0+αis the standard Riemann-Liouville fractional derivative. Our analysis relies on a fixed-point theorem of generalized concave operators. An example is given to illustrate the main result.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Yuanhong Wei

We study some second order ordinary differential equations. We establish the existence and uniqueness in some appropriate function space. By using Schauder’s fixed-point theorem, new results on the existence and uniqueness of periodic solutions are obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Wen-Xia Wang ◽  
Xi-Lan Liu ◽  
Piao-Piao Shi

A class of nonlinear sum operator equations with a parameter on order Banach spaces were considered. The existence and uniqueness of positive solutions for this kind of operator equations and the dependence of solutions on the parameter have been obtained by using the properties of cone and nonlinear analysis methods. The critical value of the parameter was estimated. Further, the application to some nonlinear three-point boundary value problems was given to show the significance of the discussion.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
I. J. Cabrera ◽  
J. Harjani ◽  
K. B. Sadarangani

We investigate the existence and uniqueness of positive solutions for the following singular fractional three-point boundary value problemD0+αu(t)+f(t,u(t))=0, 0<t<1, u(0)=u′(0)=u′′(0)=0,u′′(1)=βu′′(η), where3<α≤4,D0+αis the standard Riemann-Liouville derivative andf:(0,1]×[0,∞)→[0,∞)withlim t→0+f(t,·)=∞(i.e.,fis singular att=0). Our analysis relies on a fixed point theorem in partially ordered metric spaces.


2016 ◽  
Vol 25 (2) ◽  
pp. 215-222
Author(s):  
K. R. PRASAD ◽  
◽  
N. SREEDHAR ◽  
L. T. WESEN ◽  
◽  
...  

In this paper, we develop criteria for the existence of multiple positive solutions for second order Sturm-Liouville boundary value problem, u 00 + k 2u + f(t, u) = 0, 0 ≤ t ≤ 1, au(0) − bu0 (0) = 0 and cu(1) + du0 (1) = 0, where k ∈ 0, π 2 is a constant, by an application of Avery–Henderson fixed point theorem.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shu Song ◽  
Lingling Zhang ◽  
Bibo Zhou ◽  
Nan Zhang

Abstract In this thesis, we investigate a kind of impulsive fractional order differential systems involving control terms. By using a class of φ-concave-convex mixed monotone operator fixed point theorem, we obtain a theorem on the existence and uniqueness of positive solutions for the impulsive fractional differential equation, and the optimal control problem of positive solutions is also studied. As applications, an example is offered to illustrate our main results.


Sign in / Sign up

Export Citation Format

Share Document