scholarly journals Dynamics of knowledge in DeLP through Argument Theory Change

2012 ◽  
Vol 13 (6) ◽  
pp. 893-957 ◽  
Author(s):  
MARTÍN O. MOGUILLANSKY ◽  
NICOLÁS D. ROTSTEIN ◽  
MARCELO A. FALAPPA ◽  
ALEJANDRO J. GARCÍA ◽  
GUILLERMO R. SIMARI

AbstractThis article is devoted to the study of methods to change defeasible logic programs (de.l.p.s) which are the knowledge bases used by the Defeasible Logic Programming (DeLP) interpreter. DeLP is an argumentation formalism that allows to reason over potentially inconsistent de.l.p.s. Argument Theory Change (ATC) studies certain aspects of belief revision in order to make them suitable for abstract argumentation systems. In this article, abstract arguments are rendered concrete by using the particular rule-based defeasible logic adopted by DeLP. The objective of our proposal is to define prioritized argument revision operators à la ATC for de.l.p.s, in such a way that the newly inserted argument ends up undefeated after the revision, thus warranting its conclusion. In order to ensure this warrant, the de.l.p. has to be changed in concordance with a minimal change principle. To this end, we discuss different minimal change criteria that could be adopted. Finally, an algorithm is presented, implementing the argument revision operations.

Author(s):  
Adrian Haret ◽  
Johannes P. Wallner ◽  
Stefan Woltran

We study a type of change on knowledge bases inspired by the dynamics of formal argumentation systems, where the goal is to enforce acceptance of certain arguments. We put forward that enforcing acceptance of arguments can be viewed as a member of the wider family of belief change operations, and that an axiomatic treatment of it is therefore desirable. In our case, laying down axioms enables a precise account of the close connection between enforcing arguments and belief revision. Our analysis of enforcing arguments proceeds by (i) axiomatizing it as an operation in propositional logic and providing a representation result in terms of rankings on sets of interpretations, (ii) showing that it stands in close relationship to belief revision, and (iii) using it as a gateway towards a principled treatment of enforcement in abstract argumentation.


2002 ◽  
Vol 2 (6) ◽  
pp. 711-767 ◽  
Author(s):  
THOMAS EITER ◽  
MICHAEL FINK ◽  
GIULIANA SABBATINI ◽  
HANS TOMPITS

In this paper, we consider an approach to update nonmonotonic knowledge bases represented as extended logic programs under the answer set semantics. In this approach, new information is incorporated into the current knowledge base subject to a causal rejection principle, which enforces that, in case of conflicts between rules, more recent rules are preferred and older rules are overridden. Such a rejection principle is also exploited in other approaches to update logic programs, notably in the method of dynamic logic programming, due to Alferes et al.One of the central issues of this paper is a thorough analysis of various properties of the current approach, in order to get a better understanding of the inherent causal rejection principle. For this purpose, we review postulates and principles for update and revision operators which have been proposed in the area of theory change and nonmonotonic reasoning. Moreover, some new properties for approaches to updating logic programs are considered as well. Like related update approaches, the current semantics does not incorporate a notion of minimality of change, so we consider refinements of the semantics in this direction. We also investigate the relationship of our approach to others in more detail. In particular, we show that the current approach is semantically equivalent to inheritance programs, which have been independently defined by Buccafurri et al., and that it coincides with certain classes of dynamic logic programs. In view of this analysis, most of our results about properties of the causal rejection principle apply to each of these approaches as well. Finally, we also deal with computational issues. Besides a discussion on the computational complexity of our approach, we outline how the update semantics and its refinements can be directly implemented on top of existing logic programming systems. In the present case, we implemented the update approach using the logic programming system DLV.


Author(s):  
Claudette Cayrol ◽  
Marie-Christine Lagasquie-Schiex

2017 ◽  
Vol 17 (5-6) ◽  
pp. 889-905
Author(s):  
JIANMIN JI ◽  
FANGFANG LIU ◽  
JIA-HUAI YOU

AbstractHybrid MKNF knowledge bases have been considered one of the dominant approaches to combining open world ontology languages with closed world rule-based languages. Currently, the only known inference methods are based on the approach of guess-and-verify, while most modern SAT/ASP solvers are built under the DPLL architecture. The central impediment here is that it is not clear what constitutes a constraint propagator, a key component employed in any DPLL-based solver. In this paper, we address this problem by formulating the notion of unfounded sets for non-disjunctive hybrid MKNF knowledge bases, based on which we propose and study two new well-founded operators. We show that by employing a well-founded operator as a constraint propagator, a sound and complete DPLL search engine can be readily defined. We compare our approach with the operator based on the alternating fixpoint construction by Knorr et al. (2011. Artificial Intelligence 175, 9, 1528–1554) and show that, when applied to arbitrary partial partitions, the new well-founded operators not only propagate more truth values but also circumvent the non-converging behavior of the latter. In addition, we study the possibility of simplifying a given hybrid MKNF knowledge base by employing a well-founded operator and show that, out of the two operators proposed in this paper, the weaker one can be applied for this purpose and the stronger one cannot. These observations are useful in implementing a grounder for hybrid MKNF knowledge bases, which can be applied before the computation of MKNF models.


2011 ◽  
Vol 13 (1) ◽  
pp. 107-142 ◽  
Author(s):  
FREDERICK MAIER

AbstractWe provide a method of translating theories of Nute's defeasible logic into logic programs, and a corresponding translation in the opposite direction. Under certain natural restrictions, the conclusions of defeasible theories under the ambiguity propagating defeasible logic ADL correspond to those of the well-founded semantics for normal logic programs, and so it turns out that the two formalisms are closely related. Using the same translation of logic programs into defeasible theories, the semantics for the ambiguity blocking defeasible logic NDL can be seen as indirectly providing an ambiguity blocking semantics for logic programs. We also provide antimonotone operators for both ADL and NDL, each based on the Gelfond–Lifschitz (GL) operator for logic programs. For defeasible theories without defeaters or priorities on rules, the operator for ADL corresponds to the GL operator and so can be seen as partially capturing the consequences according to ADL. Similarly, the operator for NDL captures the consequences according to NDL, though in this case no restrictions on theories apply. Both operators can be used to define stable model semantics for defeasible theories.


2011 ◽  
Vol 13 (3) ◽  
pp. 395-463
Author(s):  
CRISTINA FEIER ◽  
STIJN HEYMANS

AbstractOpen Answer Set Programming (OASP) is an undecidable framework for integrating ontologies and rules. Although several decidable fragments of OASP have been identified, few reasoning procedures exist. In this paper, we provide a sound, complete, and terminating algorithm for satisfiability checking w.r.t. Forest Logic Programs (FoLPs), a fragment of OASP where rules have a tree shape and allow for inequality atoms and constants. The algorithm establishes a decidability result for FoLPs. Although believed to be decidable, so far only the decidability for two small subsets of FoLPs, local FoLPs and acyclic FoLPs, has been shown. We further introduce f-hybrid knowledge bases, a hybrid framework where knowledge bases and FoLPs coexist, and we show that reasoning with such knowledge bases can be reduced to reasoning with FoLPs only. We note that f-hybrid knowledge bases do not require the usual (weakly) DL-safety of the rule component, thus providing a genuine alternative approach to current integration approaches of ontologies and rules.


Sign in / Sign up

Export Citation Format

Share Document