scholarly journals Linear-Time Temporal Answer Set Programming

Author(s):  
FELICIDAD AGUADO ◽  
PEDRO CABALAR ◽  
MARTÍN DIÉGUEZ ◽  
GILBERTO PÉREZ ◽  
TORSTEN SCHAUB ◽  
...  

Abstract In this survey, we present an overview on (Modal) Temporal Logic Programming in view of its application to Knowledge Representation and Declarative Problem Solving. The syntax of this extension of logic programs is the result of combining usual rules with temporal modal operators, as in Linear-time Temporal Logic (LTL). In the paper, we focus on the main recent results of the non-monotonic formalism called Temporal Equilibrium Logic (TEL) that is defined for the full syntax of LTL but involves a model selection criterion based on Equilibrium Logic, a well known logical characterization of Answer Set Programming (ASP). As a result, we obtain a proper extension of the stable models semantics for the general case of temporal formulas in the syntax of LTL. We recall the basic definitions for TEL and its monotonic basis, the temporal logic of Here-and-There (THT), and study the differences between finite and infinite trace length. We also provide further useful results, such as the translation into other formalisms like Quantified Equilibrium Logic and Second-order LTL, and some techniques for computing temporal stable models based on automata constructions. In the remainder of the paper, we focus on practical aspects, defining a syntactic fragment called (modal) temporal logic programs closer to ASP, and explaining how this has been exploited in the construction of the solver telingo, a temporal extension of the well-known ASP solver clingo that uses its incremental solving capabilities.

2016 ◽  
Vol 17 (2) ◽  
pp. 226-243 ◽  
Author(s):  
FELICIDAD AGUADO ◽  
PEDRO CABALAR ◽  
GILBERTO PÉREZ ◽  
CONCEPCIÓN VIDAL ◽  
MARTÍN DIÉGUEZ

AbstractIn this note, we consider the problem of introducing variables in temporal logic programs under the formalism of Temporal Equilibrium Logic, an extension of Answer Set Programming for dealing with linear-time modal operators. To this aim, we provide a definition of a first-order version of Temporal Equilibrium Logic that shares the syntax of first-order Linear-time Temporal Logic but has different semantics, selecting some Linear-time Temporal Logic models we call temporal stable models. Then, we consider a subclass of theories (called splittable temporal logic programs) that are close to usual logic programs but allowing a restricted use of temporal operators. In this setting, we provide a syntactic definition of safe variables that suffices to show the property of domain independence – that is, addition of arbitrary elements in the universe does not vary the set of temporal stable models. Finally, we present a method for computing the derivable facts by constructing a non-temporal logic program with variables that is fed to a standard Answer Set Programming grounder. The information provided by the grounder is then used to generate a subset of ground temporal rules which is equivalent to (and generally smaller than) the full program instantiation.


2015 ◽  
Vol 15 (4-5) ◽  
pp. 666-680 ◽  
Author(s):  
PEDRO CABALAR ◽  
MARTÍN DIÉGUEZ ◽  
CONCEPCIÓN VIDAL

AbstractThis paper studies the relation between two recent extensions of propositional Equilibrium Logic, a well-known logical characterisation of Answer Set Programming. In particular, we show how Temporal Equilibrium Logic, which introduces modal operators as those typically handled in Linear-Time Temporal Logic (LTL), can be encoded into Infinitary Equilibrium Logic, a recent formalisation that allows the use of infinite conjunctions and disjunctions. We prove the correctness of this encoding and, as an application, we further use it to show that the semantics of the temporal logic programming formalism called TEMPLOG is subsumed by Temporal Equilibrium Logic.


2011 ◽  
Vol 11 (2-3) ◽  
pp. 171-202 ◽  
Author(s):  
MICHAEL FINK

AbstractDifferent notions of equivalence, such as the prominent notions of strong and uniform equivalence, have been studied in Answer-Set Programming, mainly for the purpose of identifying programs that can serve as substitutes without altering the semantics, for instance in program optimization. Such semantic comparisons are usually characterized by various selections of models in the logic of Here-and-There (HT). For uniform equivalence however, correct characterizations in terms of HT-models can only be obtained for finite theories, respectively programs. In this paper, we show that a selection of countermodels in HT captures uniform equivalence also for infinite theories. This result is turned into coherent characterizations of the different notions of equivalence by countermodels, as well as by a mixture of HT-models and countermodels (so-called equivalence interpretations). Moreover, we generalize the so-called notion of relativized hyperequivalence for programs to propositional theories, and apply the same methodology in order to obtain a semantic characterization which is amenable to infinite settings. This allows for a lifting of the results to first-order theories under a very general semantics given in terms of a quantified version of HT. We thus obtain a general framework for the study of various notions of equivalence for theories under answer-set semantics. Moreover, we prove an expedient property that allows for a simplified treatment of extended signatures, and provide further results for non-ground logic programs. In particular, uniform equivalence coincides under open and ordinary answer-set semantics, and for finite non-ground programs under these semantics, also the usual characterization of uniform equivalence in terms of maximal and total HT-models of the grounding is correct, even for infinite domains, when corresponding ground programs are infinite.


2004 ◽  
Vol 4 (3) ◽  
pp. 325-354 ◽  
Author(s):  
MAURICIO OSORIO ◽  
JUAN A. NAVARRO ◽  
JOSÉ ARRAZOLA

We present some applications of intermediate logics in the field of Answer Set Programming (ASP). A brief, but comprehensive introduction to the answer set semantics, intuitionistic and other intermediate logics is given. Some equivalence notions and their applications are discussed. Some results on intermediate logics are shown, and applied later to prove properties of answer sets. A characterization of answer sets for logic programs with nested expressions is provided in terms of intuitionistic provability, generalizing a recent result given by Pearce. It is known that the answer set semantics for logic programs with nested expressions may select non-minimal models. Minimal models can be very important in some applications, therefore we studied them; in particular we obtain a characterization, in terms of intuitionistic logic, of answer sets which are also minimal models. We show that the logic G3 characterizes the notion of strong equivalence between programs under the semantic induced by these models. Finally we discuss possible applications and consequences of our results. They clearly state interesting links between ASP and intermediate logics, which might bring research in these two areas together.


2012 ◽  
Vol 12 (4-5) ◽  
pp. 719-735 ◽  
Author(s):  
JOSEPH BABB ◽  
JOOHYUNG LEE

AbstractThe module theorem by Janhunen et al. demonstrates how to provide a modular structure in answer set programming, where each module has a well-defined input/output interface which can be used to establish the compositionality of answer sets. The theorem is useful in the analysis of answer set programs, and is a basis of incremental grounding and reactive answer set programming. We extend the module theorem to the general theory of stable models by Ferraris et al. The generalization applies to non-ground logic programs allowing useful constructs in answer set programming, such as choice rules, the count aggregate, and nested expressions. Our extension is based on relating the module theorem to the symmetric splitting theorem by Ferraris et al. Based on this result, we reformulate and extend the theory of incremental answer set computation to a more general class of programs.


2019 ◽  
Vol 66 ◽  
pp. 989-1029
Author(s):  
Laurent Garcia ◽  
Claire Lefèvre ◽  
Igor Stéphan ◽  
Odile Papini ◽  
Éric Würbel

The paper deals with base revision for Answer Set Programming (ASP). Base revision in classical logic is done by the removal of formulas. Exploiting the non-monotonicity of ASP allows one to propose other revision strategies, namely addition strategy or removal and/or addition strategy. These strategies allow one to define families of rule-based revision operators. The paper presents a semantic characterization of these families of revision operators in terms of answer sets. This semantic characterization allows for equivalently considering the evolution of syntactic logic programs and the evolution of their semantic content. It then studies the logical properties of the proposed operators and gives complexity results.  


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 881
Author(s):  
M. Eugenia Cornejo ◽  
David Lobo ◽  
Jesús Medina

This paper relates two interesting paradigms in fuzzy logic programming from a semantical approach: core fuzzy answer set programming and multi-adjoint normal logic programming. Specifically, it is shown how core fuzzy answer set programs can be translated into multi-adjoint normal logic programs and vice versa, preserving the semantics of the starting program. This translation allows us to combine the expressiveness of multi-adjoint normal logic programming with the compactness and simplicity of the core fuzzy answer set programming language. As a consequence, theoretical properties and results which relate the answer sets to the stable models of the respective logic programming frameworks are obtained. Among others, this study enables the application of the existence theorem of stable models developed for multi-adjoint normal logic programs to ensure the existence of answer sets in core fuzzy answer set programs.


2019 ◽  
Vol 19 (5-6) ◽  
pp. 790-807 ◽  
Author(s):  
STEFANIA COSTANTINI

AbstractIn this paper we consider Epistemic Logic Programs, which extend Answer Set Programming (ASP) with “ epistemic operators” and “ epistemic negation”, and a recent approach to the semantics of such programs in terms ofWorld Views. We propose some observations on the existence and number of world views. We show how to exploit an extended ASP semantics in order to: (i) provide a characterization of world views, different from existing ones; (ii) query world views and query the whole set of world views.


2019 ◽  
Vol 19 (5-6) ◽  
pp. 826-840
Author(s):  
WOLFGANG FABER ◽  
MICHAEL MORAK ◽  
STEFAN WOLTRAN

AbstractEpistemic Logic Programs (ELPs) extend Answer Set Programming (ASP) with epistemic negation and have received renewed interest in recent years. This led to the development of new research and efficient solving systems for ELPs. In practice, ELPs are often written in a modular way, where each module interacts with other modules by accepting sets of facts as input, and passing on sets of facts as output. An interesting question then presents itself: under which conditions can such a module be replaced by another one without changing the outcome, for any set of input facts? This problem is known as uniform equivalence, and has been studied extensively for ASP. For ELPs, however, such an investigation is, as of yet, missing. In this paper, we therefore propose a characterization of uniform equivalence that can be directly applied to the language of state-of-the-art ELP solvers. We also investigate the computational complexity of deciding uniform equivalence for two ELPs, and show that it is on the third level of the polynomial hierarchy.


2010 ◽  
Vol 11 (1) ◽  
pp. 111-123 ◽  
Author(s):  
V. W. MAREK ◽  
J. B. REMMEL

AbstractWe investigate a proof system based on a guarded resolution rule and show its adequacy for the stable semantics of normal logic programs. As a consequence, we show that Gelfond–Lifschitz operator can be viewed as a proof-theoretic concept. As an application, we find a propositional theory EP whose models are precisely stable models of programs. We also find a class of propositional theories 𝓒P with the following properties. Propositional models of theories in 𝓒P are precisely stable models of P, and the theories in 𝓒T are of the size linear in the size of P.


Sign in / Sign up

Export Citation Format

Share Document