Interpenetrating Polymer Network Hydrogels via a One-Pot and in Situ Gelation System Based on Peptide Self-Assembly and Orthogonal Cross-Linking for Tissue Regeneration

2020 ◽  
Vol 32 (6) ◽  
pp. 2353-2364 ◽  
Author(s):  
Shohei Ishikawa ◽  
Kazutoshi Iijima ◽  
Daisuke Matsukuma ◽  
Yukiyo Asawa ◽  
Kazuto Hoshi ◽  
...  
2020 ◽  
Vol 21 (12) ◽  
pp. 4261
Author(s):  
Raffaele Pugliese ◽  
Fabrizio Gelain

Supramolecular nanostructures formed through peptide self-assembly can have a wide range of applications in the biomedical landscape. However, they often lose biomechanical properties at low mechanical stress due to the non-covalent interactions working in the self-assembling process. Herein, we report the design of cross-linked self-assembling peptide hydrogels using a one-pot in situ gelation system, based on 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide/N-hydroxysulfosuccinimide (EDC/sulfo–NHS) coupling, to tune its biomechanics. EDC/sulfo–NHS coupling led to limited changes in storage modulus (from 0.9 to 2 kPa), but it significantly increased both the strain (from 6% to 60%) and failure stress (from 19 to 35 Pa) of peptide hydrogel without impairing the spontaneous formation of β-sheet-containing nano-filaments. Furthermore, EDC/sulfo–NHS cross-linking bestowed self-healing and thixotropic properties to the peptide hydrogel. Lastly, we demonstrated that this strategy can be used to incorporate bioactive functional motifs after self-assembly on pre-formed nanostructures by functionalizing an Ac-LDLKLDLKLDLK-CONH2 (LDLK12) self-assembling peptide with the phage display-derived KLPGWSG peptide involved in the modulation of neural stem cell proliferation and differentiation. The incorporation of a functional motif did not alter the peptide’s secondary structure and its mechanical properties. The work reported here offers new tools to both fine tune the mechanical properties of and tailor the biomimetic properties of self-assembling peptide hydrogels while retaining their nanostructures, which is useful for tissue engineering and regenerative medicine applications.


2011 ◽  
Vol 675-677 ◽  
pp. 481-484 ◽  
Author(s):  
Shao Yun Shan ◽  
Qing Ming Jia ◽  
Li Hong Jiang ◽  
Ya Ming Wang

Epoxy/polyurethane interpenetrating polymer network coatings(EP/PU IPNs) modified by organic montmorillonite(oMMT)were prepared by interpenetrating polymer technology and in situ intercalative polymerization methods. TEM analysis showed that there is interaction between the oMMT and EP, PU phase, and the oMMT plays a role of "cross-linking point", changing the EP/PU matrix microstructure. Electrochemical analysis showed that oMMT and IPNs of EP and PU exhibits synergistic effect on improving anticorrosive properties of pure EP. When PU content is 30%, oMMT content is 3%, the EP/PU IPNs coatings has the best corrosion resistance.


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Ying Wu ◽  
Qing Yang ◽  
Yali Gi ◽  
Yueting Zhang

AbstractA novel hydrogel wound dressing with semi-interpenetrating polymer network structure (semi-IPN) was prepared by radical polymerization of acrylic acid with potassium persulfate (K2S2O8) as initiator and N, N'-methylenebisacrylamide (MBA) as cross-linking agent in the presence of chitosan (CTS) and polyvinyl pyrrolidone (PVP). Hydrogels were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). SEM displayed semi- IPN hydrogels' creased surface with some scale-like wrinkles, thus improving the absorptive capability which has been considered as a most important characteristic of wound dressings. It was found that the content of cross-linking agent and the mass ratio of PVP and CTS had much influence on the mechanical properties of the hydrogel, varying from brittle plastics to elastomer due to the different degrees of cross linking. Since tensile strength is partly in inverse ratio to the hydrogel absorbent capability, the article offers an analysis of varying material proportion in order to obtain an optimum properties of the hydrogel wound dressing .


Biomaterials ◽  
2018 ◽  
Vol 170 ◽  
pp. 12-25 ◽  
Author(s):  
Hamid Sadeghi Abandansari ◽  
Mohammad Hossein Ghanian ◽  
Fahimeh Varzideh ◽  
Elena Mahmoudi ◽  
Sarah Rajabi ◽  
...  

2016 ◽  
Vol 7 (29) ◽  
pp. 4761-4770 ◽  
Author(s):  
Jianbing Huang ◽  
Hanjun Zhu ◽  
Hui Liang ◽  
Jiang Lu

Salicylaldehyde-functionalized nano-objects are prepared via RAFT-mediated polymerization-induced self-assembly. Their simultaneous stabilization and fluorescence modification can be achieved by one-step reaction.


2019 ◽  
Vol 52 (3) ◽  
pp. 1140-1149 ◽  
Author(s):  
Miao Chen ◽  
Jia-Wei Li ◽  
Wen-Jian Zhang ◽  
Chun-Yan Hong ◽  
Cai-Yuan Pan

2020 ◽  
Vol 32 (12) ◽  
pp. 5208-5216 ◽  
Author(s):  
Fang Chen ◽  
Peter Le ◽  
Krystal Lai ◽  
Gabriella M. Fernandes-Cunha ◽  
David Myung

Author(s):  
Saruchi Sharma ◽  
VANEET KUMAR

Objective: This study involves the synthesis of Gum tragacanth (gt) based interpenetrating polymer network (ipn) and its utilization for sustained release of anti-ulcerative drug i.e. pantoprazole sodium. Methods: IPN was synthesized from Gum tragacanth, polyacrylic acid (gt-cl-paa) hydrogel. gt-cl-paa was kept in distilled water. Further, acryamide (aam) and methylmethacrylate (mma) was added and then kept for overnight. Later on, lipase and glutaraldehyde were added. Homopolymers and the unreacted monomers were removed using acetone. Synthesized IPN was dried at 50 °C for further study. Synthesized ipn was swelled in water and the drug was added to it. The drug was entrapped in the pores of the synthesized ipn and then drug release behavior was studied using uv-vis spectrophotometer. Results: Gt, paa and mma based crosslinked IPN were synthesized using lipase-glutaraldehyde as initiator-crosslinker system. The synthesized IPN was pH sensitive and possessed the desired swelling capacity required for the controlled and systematic liberation of pantoprazole sodium at 37 °C. The kinetic of drug release was studied and found that lateral diffusion (DL) of drug was higher as compared to the initial diffusion (DI). The prepared IPN can be used as prospective carrier for prolonged drug delivery. Conclusion: A novel pH sensitive and colon targeted IPN was synthesized. It acts as an effective device for the controlled release of drug pantoprazole sodium.


Sign in / Sign up

Export Citation Format

Share Document