Measurement of Saturated Vapor Pressure and Compressed Liquid Density for 1,1,1,3,3,3-Hexafluoroisopropylmethyl Ether

2020 ◽  
Vol 65 (10) ◽  
pp. 4790-4797
Author(s):  
Qi Chen ◽  
Lin Du ◽  
Xiangtian Guan ◽  
Zhikai Guo ◽  
Ruqi Gao ◽  
...  
2018 ◽  
Vol 240 ◽  
pp. 03004
Author(s):  
Min-rui Chen ◽  
Jin-yuan Qian ◽  
Zan Wu ◽  
Chen Yang ◽  
Zhi-jiang Jin ◽  
...  

When liquids flowing through a throttling element, such as a perforated plate, the velocity increases and the pressure decreases. If the pressure is below the saturated vapor pressure, the liquid will vaporize into small bubbles, which is called hydraulic cavitation. In fact, vaporization nucleus is another crucial condition for vaporizing. The nanoparticles contained in the nanofluids play a significant role in vaporization of liquids. In this paper, the effects of the nanoparticles on hydraulic cavitation are investigated. Firstly, a geometric model of a pipe channel equipped with a perforated plate is established. Then with different nanoparticle volume fractions and diameters, the nanofluids flowing through the channel is numerically simulated based on a validated numerical method. The operation conditions, such as the temperature and the pressure ratio of inlet to outlet, are the considered variables. As a significant parameter, cavitation numbers under different operation conditions are achieved to investigate the effects of nanoparticles on hydraulic cavitation. Meanwhile, the contours are extracted to research the distribution of bubbles for further investigation. This study is of interests for researchers working on hydraulic cavitation or nanofluids.


2005 ◽  
Vol 284-286 ◽  
pp. 353-356 ◽  
Author(s):  
Koji Ioku ◽  
Giichiro Kawachi ◽  
Nakamichi Yamasaki ◽  
Hirotaka Fujimori ◽  
Seishi Goto

Porous plates of hydroxyapatite (Ca10(PO4)6(OH)2; HA) with about 0.5 to 5 mm in thickness and porous HA granules of about 40 µm to 1 mm in size with tailored crystal surface were prepared by the hydrothermal vapor exposure method at the temperatures above 105 °C under saturated vapor pressure of pure water. Porous HA plates with about 75 % porosity prepared at 120 °C were composed of rod-shaped crystals of about 20 µm in length. Porous HA granules prepared at 160 °C were also composed of rod-shaped crystals of about 20 µm in length with the mean aspect ratio of 30. These crystals were elongated along the c-axis. Rod-shaped HA crystals were locked together to make micro-pores of about 0.1 to 0.5 µm in size. Both of materials were nonstoichiometric HA with calcium deficient composition. These materials must have the advantage of adsorptive activity, because they had large specific crystal surface and much micro-pores.


Daxue Huaxue ◽  
2021 ◽  
Vol 0 (0) ◽  
pp. 2107062-0
Author(s):  
Shuai Zhang ◽  
Jian Zhang ◽  
Shaowei Bian ◽  
Yaping Zhao ◽  
Li Shen ◽  
...  

Author(s):  
О.И. НИКОНОВ ◽  
Н.Н. БЕЛИНА ◽  
А.В. ГУКАСЯН

Приведены характеристики содержащихся в масле одорирующих веществ. Проведен анализ конструкции существующих дезодораторов. Рассчитаны параметры, влияющие на процесс дезодорации в тонком слое. Получена зависимость давления насыщенных паров от температуры дезодорации. На основе проведенных расчетов предложены способы интенсификации процесса дезодорации. Предложена усовершенствованная конструкция дезодоратора, позволяющая интенсифицировать процесс дезодорации: сократить время и уменьшить расход острого пара. The characteristics of the odorizing substances contained in the oil are given. An analysis of the design of already existing deodorizers is given. The parameters affecting the deodorization process in a thin layer are calculated. The dependence of the saturated vapor pressure on the deodorization temperature was obtained. On the basis of the calculations performed, methods for intensifying the deodorization process have been proposed. The proposed improved design of the deodorizer, which allows intensify the deodorization process: to reduce the time and reduce the consumption of live steam.


2011 ◽  
Vol 694 ◽  
pp. 309-314 ◽  
Author(s):  
Jiang Feng Lou ◽  
Rui Xiang Wang ◽  
Min Zhang

The saturated vapor pressures of R22 uniformly mixed with refrigeration oil and nano- refrigeration-oil were measured experimentally at a temperature range from 263 to 333K and mass fractions from 1 to 5%. The experimental results showed that the saturated vapor pressure of R22/KT56 mixture was lower than that of pure R22; the pressure deviation between them increased with a raising mass fraction of refrigeration oil and temperature. After adding nano-NiFe2O4 and nano-fullerene into KT56, the pressure deviation increased at the same mass fraction and temperature. A saturated vapor pressure correlation for R22 and refrigeration oil/nano-refrigeration-oil mixture was proposed, and the calculated values agreed with the experimental data within the deviation of ± 0.77%.


Sign in / Sign up

Export Citation Format

Share Document