Dispersion of Water Proton Spin–Lattice Relaxation Rates in Aqueous Solutions of Multiwall Carbon Nanotubes (MWCNTs) Stabilized via Alkyloxymethylimidazolium Surfactants

2017 ◽  
Vol 121 (21) ◽  
pp. 11839-11850 ◽  
Author(s):  
Maria Dobies ◽  
Justyna Iżykowska ◽  
Michalina Wilkowska ◽  
Aneta Woźniak-Braszak ◽  
Kosma Szutkowski ◽  
...  
1980 ◽  
Vol 58 (19) ◽  
pp. 2016-2023 ◽  
Author(s):  
Lawrence D. Colebrook ◽  
Laurance D. Hall

A general discussion is given of the determination of the proton spin–lattice relaxation rates of natural products, with particular emphasis on use of the null-point method which, for the systems studied here, gives identical results with those obtained via the conventional (and relatively time consuming) computational method.


1991 ◽  
Vol 46 (8) ◽  
pp. 697-699
Author(s):  
F. Milia ◽  
Y. Bakopoulos ◽  
Lj. Miljkovic

AbstractThe water proton spin-lattice relaxation time and recovery function of exchangeable water was measured in tricalcium silicate (C3S) gels. The measurements were carried out as a function of the hydration time and grain size. Results show that the hydration of (C3S) is a two stage process. A model is developped


1991 ◽  
Vol 46 (12) ◽  
pp. 1123-1130 ◽  
Author(s):  
H. Langen ◽  
W. Müller-Warmuth

Abstract Proton spin lattice relaxation rates have been measured at 15 and 30 MHz and down to 5 K for the partially deuterated molecular crystals 4-F-toluene, 4-Cl-toluene, and 2,6-Cl2-toluene. The behaviour of these materials is governed by methyl group tunnelling. As compared with the undeuterated compounds, the low temperature relaxation is enhanced and the details depend on the removal of the symmetry coupling between rotator and spin states. The hindering barriers remain unchanged, the A to E conversion rates are faster, and relaxation is dominated by spectral density contributions J(2ωo) and J(2ω0). In one case an additional influence of level-crossing energy transfer on relaxation is observed. Field-cycling spectroscopy reveals steps rather than peaks if the proton spin Zeeman and tunnelling splittings match


Sign in / Sign up

Export Citation Format

Share Document