Boosting the Acid Sites and Lattice Oxygen Activity of the Fe–Cu Catalyst for One-Pot Producing 2,5-Diformylfuran from Fructose

Author(s):  
Wenlong Jia ◽  
Jie Zhang ◽  
Miao Zuo ◽  
Xin Yu ◽  
Huai Liu ◽  
...  
Author(s):  
Douglass F. Taber

Jianbo Wang of Peking University described (Angew. Chem. Int. Ed. 2010, 49, 2028) the Au-promoted bromination of a benzene derivative such as 1 with N-bromosuccinimide. In a one-pot procedure, addition of a Cu catalyst followed by microwave heating delivered the aminated product 2. Jian-Ping Zou of Suzhou University and Wei Zhang of the University of Massachusetts, Boston, observed (Tetrahedron Lett. 2010, 51, 2639) that the phosphonylation of an arene 3 proceeded with substantial ortho selectivity. Yonghong Gu of the University of Science and Technology, Hefei, showed (Tetrahedron Lett. 2010, 51, 192) that an arylpropanoic acid 6 could be ortho hydroxylated with PIFA to give 7. Louis Fensterbank, Max Malacria, and Emmanuel Lacôte of UMPC Paris found (Angew. Chem. Int. Ed. 2010, 49, 2178) that a benzoic acid could be ortho aminated by way of the cyano amide 8. Daniel J. Weix of the University of Rochester developed (J. Am. Chem. Soc. 2010, 132, 920) a protocol for coupling an aryl iodide 10 with an alkyl iodide 11 to give 12. Professor Wang devised (Angew. Chem. Int. Ed. 2010, 49, 1139) a mechanistically intriguing alkyl carbonylation of an iodobenzene 10. This is presumably proceeding by way of the intermediate diazo alkane. Usually, benzonitriles are prepared by cyanation of the halo aromatic. Hideo Togo of Chiba University established (Synlett 2010, 1067) a protocol for the direct electrophilic cyanation of an electron-rich aromatic 15. Thomas E. Cole of San Diego State University observed (Tetrahedron Lett. 2010, 51, 3033) that an alkyl dimethyl borane, readily prepared by hydroboration of the alkene with BCl3 and Et3 SiH, reacted with benzoquinone 17 to give 18. Presumably this transformation could also be applied to substituted benzoquinones. When a highly substituted benzene derivative is needed, it is sometimes more economical to construct the aromatic ring. Joseph P. A. Harrity of the University of Sheffield and Gerhard Hilt of Philipps-Universität Marburg showed (J. Org. Chem. 2010, 75, 3893) that the Co-catalyzed Diels-Alder cyloaddition of alkynyl borinate 21 with a diene 20 proceeded with high regiocontrol, to give, after oxidation, the aryl borinate 22.


2018 ◽  
Vol 5 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Yu.S. Demidova ◽  
I.L. Simakova ◽  
E.V. Suslov ◽  
K.P. Volcho ◽  
N.F. Salakhutdinov ◽  
...  

Abstract In the current work gold catalysts supported on both commercial oxides and oxides synthesized by the sol-gel method were used for the one-pot alcohol amination of myrtenol. In general, utilization of metal oxides synthesized by the sol-gel method as the gold catalyst support enhanced the knowledge regarding key parameters determining catalytic behavior. Synthesized alumina was characterized by stronger acid sites favoring primary amine accumulation on the catalyst surface, as compared to the commercial oxide. Utilization of mixed metal oxides synthesized by the sol-gel method resulted in the non-additive behavior of different oxides enhancing the catalytic activity. Introduction of ceria into alumina modified the support basicity resulting in more efficient alcohol activation.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1037 ◽  
Author(s):  
Ekaterina S. Borovinskaya ◽  
Sebastian Trebbin ◽  
Felix Alscher ◽  
Cornelia Breitkopf

CuO/ZnO/ZrO2 catalyst systems were synthesized in different ways and comprehensively characterized in order to study synthesis-to-property relations. A series of catalyst samples was prepared by coprecipitation, one-pot synthesis, and wet impregnation. The coprecipitation of multicomponent precipitates is usually a preliminary stage for preparation of mixed oxide catalysts. Cetyltrimethylammonium bromide (CTAB) was used in the surfactant-supported coprecipitation to improve the structural or textural characteristics of the catalytic samples. In the one-pot synthesis, all necessary components are simultaneously converted by evaporation from solutions into solids. During the wet impregnation, zirconium hydroxide is loaded with metal salts. After thermal treatment, all samples formed pure metal oxide forms, which was confirmed by XRD. The specific surface area of the investigated samples and their porous texture were determined by nitrogen adsorption. The reducibility of metal oxides and the kind of CuO phase was characterized by temperature-programmed reduction (TPR), and the surface acid properties by temperature-programmed ammonia desorption (TPAD). The CuO/ZnO/ZrO2 sample with the highest amount of strong acid sites is characterized by the formation of large CuO particles combined with the worst reducibility so that potentially catalytic active Cu/CuO pairs can be formed. One catalyst system was further characterized by in situ diffuse reflection Fourier transform infrared spectroscopy (DRIFTS) to identify surface intermediate species, which may occur during the conversion of CO2/H2 to methanol.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1685
Author(s):  
Katarzyna Morawa Eblagon ◽  
Anna Malaika ◽  
Karolina Ptaszynska ◽  
Manuel Fernando R. Pereira ◽  
José Luís Figueiredo

The cascade dehydration of glucose to 5-hydroxymethylfurfural (HMF) was carried out in water over a series of Nb2O5 catalysts, which were derived from the thermal treatment of niobic acid at 300 and 550 °C, under air or inert atmosphere. Amorphous niobic acid showed high surface area (366 m2/g) and large acidity (2.35 mmol/g). With increasing the temperature of the thermal treatment up to 550 °C, the amorphous Nb2O5 was gradually transformed into a pseudohexagonal phase, resulting in a decrease in surface area (27–39 m2/g) and total acidity (0.05–0.19 mmol/g). The catalysts’ performance in cascade dehydration of glucose realized in pure water was strongly influenced by the total acidity of these materials. A remarkable yield of 37% HMF in one-pot reaction in water was achieved using mesoporous amorphous niobium oxide prepared by thermal treatment of niobic acid at 300 °C in air. The best-performing catalyst displayed a total acidity lower than niobic acid (1.69 mmol/g) which afforded a correct balance between a high glucose conversion and limited further conversion of the target product to numerous polymers and humins. On the other hand, the treatment of niobic acid at 550 °C, independently of the atmosphere used during the sample preparation (i.e., air or N2), resulted in Nb2O5 catalysts with a high ratio of Lewis to Brønsted acid sites and poor total acidity. These materials excelled at catalyzing the isomerization step in the tandem process.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 475
Author(s):  
Yabin Wei ◽  
Shuangling Jin ◽  
Rui Zhang ◽  
Weifeng Li ◽  
Jiangcan Wang ◽  
...  

Novel Mn–Ce–Ti–O composite aerogels with large mesopore size were prepared via a one-pot sol–gel method by using propylene oxide as a network gel inducer and ethyl acetoacetate as a complexing agent. The effect of calcination temperature (400, 500, 600, and 700 °C) on the NH3–selective catalytic reduction (SCR) performance of the obtained Mn–Ce–Ti–O composite aerogels was investigated. The results show that the Mn–Ce–Ti–O catalyst calcined at 600 °C exhibits the highest NH3–SCR activity and lowest apparent activation energy due to its most abundant Lewis acid sites and best reducibility. The NO conversion of the MCTO-600 catalyst maintains 100% at 200 °C in the presence of 100 ppm SO2, showing the superior resistance to SO2 poisoning as compared with the MnOx–CeO2–TiO2 catalysts reported the literature. This should be mainly attributed to its large mesopore sizes with an average pore size of 32 nm and abundant Lewis acid sites. The former fact facilitates the decomposition of NH4HSO4, and the latter fact reduces vapor pressure of NH3. The NH3–SCR process on the MCTO-600 catalyst follows both the Eley–Rideal (E–R) mechanism and the Langmuir–Hinshelwood (L–H) mechanism.


2019 ◽  
Vol 21 (9) ◽  
pp. 2462-2468 ◽  
Author(s):  
Joby Sebastian ◽  
Mingyuan Zheng ◽  
Yu Jiang ◽  
Yu Zhao ◽  
Hua Wang ◽  
...  

One-pot catalytic conversion of l-lysine to caprolactam over Ir/H-Beta zeolites was demonstrated. In methanol solvent, l-lysine is transformed to DMAC and then to CPL via C–N bond hydrogenolysis by the synergistic catalysis of acid sites and hydrogenation sites.


2019 ◽  
Vol 245 ◽  
pp. 706-720 ◽  
Author(s):  
J.C. Martínez-Munuera ◽  
M. Zoccoli ◽  
J. Giménez-Mañogil ◽  
A. García-García

Author(s):  
Sorin Avramescu ◽  
Cristian D. Ene ◽  
Madalina Ciobanu ◽  
Josefine Schnee ◽  
François Devred ◽  
...  

Catalytic activity of TiO2, 2%Re-TiO2 and 10%Re-TiO2 in the conversion of carbohydrates into levulinic acid under autoclave conditions was evaluated. These materials were prepared by aerogel method and characterized by...


Sign in / Sign up

Export Citation Format

Share Document