Continental shelf waves and the effects of atmospheric pressure and wind stress on sea level

1966 ◽  
Vol 71 (12) ◽  
pp. 2883-2893 ◽  
Author(s):  
B. V. Hamon
1983 ◽  
Vol 34 (1) ◽  
pp. 23 ◽  
Author(s):  
E Wolanski ◽  
AF Bennett

Winds and atmospheric pressure, sea level and water currents were measured at several locations over the continental shelf, both east and west of the Great Barrier Reef, between 14.5�s. and 20�S., from June to November 1980. The dominant wind direction changed from westward over the Coral Sea to north- westward (roughly parallel to the shore) over the shelf. A strong non-tidal low-frequency signal in all sea- level and longshore current data was found, highly coherent from site to site and strongly correlated with the longshore wind component over the shelf, though not with the atmospheric pressure. A model of wind- driven barotropic shelf waves is used to explain a number of observations, such as the invariance of temporal fluctuations of longshore current with distance from shore, and the northward longshore propagation of oceanic disturbances at a speed equal to twice that of the first-mode barotropic free shelf wave, a speed one order of magnitude smaller than that of the wind system. The low-frequency current fluctuations resulted in large water displacements, up and down the coast. Low-frequency cross-shelf currents were much weaker and less coherent. Two upwelling mechanisms are internal tides and internal Kelvin waves coupled to the barotropic shelf waves.


2015 ◽  
Vol 785 ◽  
pp. 54-77 ◽  
Author(s):  
J. T. Rodney ◽  
E. R. Johnson

Alongshore variations in coastline curvature or offshore depth profile can create localised regions of shelf-wave propagation with modes decaying outside these regions. These modes, termed localised continental shelf waves ($\ell$CSWs) here, exist only at certain discrete frequencies lying below the local maximum frequency, and above the far-field maximum frequency, for propagating shelf waves. The purpose of this paper is to obtain these frequencies and construct, both analytically and numerically, and discuss $\ell$CSWs for shelves with arbitrary alongshore variations in offshore depth profile and coastline curvature. If the shelf curvature changes by a small fraction of its value over the shelf section of interest or an alongshore perturbation in offshore depth profile varies slowly over the same length scale then $\ell$CSWs can be constructed using WKBJ theory. Two subcases are described: (i) if the propagating region is sufficiently long that the offshore structure of the $\ell$CSW varies appreciably alongshore then the frequency and alongshore structure are found from a sequence of local problems; (ii) if the propagating region is sufficiently short that the alongshore change in offshore structure of the $\ell$CSW is small then the alongshore modal structure is given in an explicit, uniformly valid form. A separate asymptotic theory is required for curvature perturbations to shelves that are otherwise straight rather than curved. Comparison with highly accurately numerically determined $\ell$CSWs shows that both theories are extremely accurate, with the WKBJ theory having a significantly wider range of applicability. An idealised model for the generation of $\ell$CSWs is also suggested. A localised time-periodic wind stress generates an evanescent continental shelf wave in the far field of a localised mode where the coast is almost straight and the response on the shelf is obtained numerically. If the forcing frequency is close to that of an $\ell$CSW then the wind stress excites energetic motions in the region of maximum curvature, creating a significant localised response possibly far from the forcing region.


2021 ◽  
Vol 917 ◽  
Author(s):  
S. Jamshidi ◽  
E.R. Johnson

Abstract


2016 ◽  
Vol 127 ◽  
pp. 43
Author(s):  
M.A. Serrano ◽  
M. Díez-Minguito ◽  
M. Ortega-Sánchez ◽  
M.A. Losad

Sign in / Sign up

Export Citation Format

Share Document