scholarly journals No evidence for increased cell entry or antibody evasion by Delta sublineage AY.4.2

Author(s):  
Prerna Arora ◽  
Amy Kempf ◽  
Inga Nehlmeier ◽  
Luise Graichen ◽  
Martin S. Winkler ◽  
...  

Since the beginning of the COVID-19 pandemic, multiple SARS-CoV-2 variants have emerged. While some variants spread only locally, others, referred to as variants of concern, disseminated globally and became drivers of the pandemic. All SARS-CoV-2 variants harbor mutations relative to the virus circulating early in the pandemic, and mutations in the viral spike (S) protein are considered of particular relevance since the S protein mediates host cell entry and constitutes the key target of the neutralizing antibody response. As a consequence, mutations in the S protein may increase SARS-CoV-2 infectivity and enable its evasion of neutralizing antibodies. Furthermore, mutations in the S protein can modulate viral transmissibility and pathogenicity.

2020 ◽  
Author(s):  
Ilona Rissanen ◽  
Robert Stass ◽  
Stefanie A. Krumm ◽  
Jeffrey Seow ◽  
Ruben J.G. Hulswit ◽  
...  

AbstractThe intricate lattice of Gn and Gc glycoprotein spike complexes at the surface of hantaviruses facilitates host-cell entry and is the primary target of the neutralizing antibody-mediated immune response. Here, through study of a neutralizing monoclonal antibody (mAb 4G2) generated in a bank vole reservoir host following infection with Puumala virus (PUUV), we provide molecular-level insights into how antibody-mediated targeting of the hantaviral glycoprotein lattice effectively neutralizes the virus. Crystallographic analysis reveals that mAb 4G2 binds to a multi-domain site on Gc in the pre-fusion state, and that Fab binding is incompatible with the conformational changes of the Gc that are required for host cell entry. Cryo-electron microscopy of PUUV-like particles treated with Fab 4G2 demonstrates that the antibody binds to monomeric Gc at breaks in the Gn-Gc lattice, highlighting the immunological accessibility of Gc monomers on the mature hantavirus surface and the plastic nature of the higher-order lattice assembly. This work provides a structure-based blueprint for rationalizing antibody-mediated targeting of hantaviruses.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ilona Rissanen ◽  
Robert Stass ◽  
Stefanie A Krumm ◽  
Jeffrey Seow ◽  
Ruben JG Hulswit ◽  
...  

The intricate lattice of Gn and Gc glycoprotein spike complexes on the hantavirus envelope facilitates host-cell entry and is the primary target of the neutralizing antibody-mediated immune response. Through study of a neutralizing monoclonal antibody termed mAb P-4G2, which neutralizes the zoonotic pathogen Puumala virus (PUUV), we provide a molecular-level basis for antibody-mediated targeting of the hantaviral glycoprotein lattice. Crystallographic analysis demonstrates that P-4G2 binds to a multi-domain site on PUUV Gc and may preclude fusogenic rearrangements of the glycoprotein that are required for host-cell entry. Furthermore, cryo-electron microscopy of PUUV-like particles in the presence of P-4G2 reveals a lattice-independent configuration of the Gc, demonstrating that P-4G2 perturbs the (Gn-Gc)4 lattice. This work provides a structure-based blueprint for rationalizing antibody-mediated targeting of hantaviruses.


Author(s):  
Dr. Priyanka Saha ◽  
Ranabir Majumder ◽  
sourabrata chakraborty ◽  
Amit Kumar Srivastava ◽  
Mahitosh Mandal ◽  
...  

<p>SARS-CoV-2 uses RBD of Spike (S) protein to attach with human cell via ACE2 receptor, followed by protease priming at S1/S2 site resulted in host cell entry and pathogenesis. In this context, we focused our aim in studying natural mutations harboring in Spike protein of SARS-CoV-2. We have analyzed 420 COVID-19 cases. G476S and V483G mutation are observed which lies in the RBD region where as the prevalent D614G mutation is observed in the vicinity of S1/S2 site. Interestingly MD simulation supports strong favorable interaction of ACE2 with RBD region containing V483A mutation as compared to G476S and reference wild Wuhan S protein. Radius of gyration analysis also showed high degree of compactness in V483A. The landscape plot and Gibbs free energy also support our findings. Overall, our study indicates that V483G in the RBD region can enhance its binding with the human ACE2 receptor. Interestingly D614G mutation in vicinity of S1/S2 region introduced a new cleavage site specific for a serine protease elastase that is anticipated to broaden the virus host cell tropism. Hence, both V483A and D614G mutations led to enhanced and broaden the virus host cell entry and transmission of the disease. Further epitope mapping analysis revealed G476S and D614G mutations as antigenic determinants and thus these mutations are important while designing a therapeutics vaccine or chimeric antibody. This finding will help in further understanding the role of such arising mutations in modulating immunogenicity, viral tropism and pathogenesis of the disease, which in lieu will help in designing vaccine more precisely to mitigate pandemic COVID-19. </p> <p> </p>


Author(s):  
Dr. Priyanka Saha ◽  
Ranabir Majumder ◽  
sourabrata chakraborty ◽  
Amit Kumar Srivastava ◽  
Mahitosh Mandal ◽  
...  

<p>SARS-CoV-2 uses RBD of Spike (S) protein to attach with human cell via ACE2 receptor, followed by protease priming at S1/S2 site resulted in host cell entry and pathogenesis. In this context, we focused our aim in studying natural mutations harboring in Spike protein of SARS-CoV-2. We have analyzed 420 COVID-19 cases. G476S and V483G mutation are observed which lies in the RBD region where as the prevalent D614G mutation is observed in the vicinity of S1/S2 site. Interestingly MD simulation supports strong favorable interaction of ACE2 with RBD region containing V483A mutation as compared to G476S and reference wild Wuhan S protein. Radius of gyration analysis also showed high degree of compactness in V483A. The landscape plot and Gibbs free energy also support our findings. Overall, our study indicates that V483G in the RBD region can enhance its binding with the human ACE2 receptor. Interestingly D614G mutation in vicinity of S1/S2 region introduced a new cleavage site specific for a serine protease elastase that is anticipated to broaden the virus host cell tropism. Hence, both V483A and D614G mutations led to enhanced and broaden the virus host cell entry and transmission of the disease. Further epitope mapping analysis revealed G476S and D614G mutations as antigenic determinants and thus these mutations are important while designing a therapeutics vaccine or chimeric antibody. This finding will help in further understanding the role of such arising mutations in modulating immunogenicity, viral tropism and pathogenesis of the disease, which in lieu will help in designing vaccine more precisely to mitigate pandemic COVID-19. </p> <p> </p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nanda Kishore Routhu ◽  
Narayanaiah Cheedarla ◽  
Venkata Satish Bollimpelli ◽  
Sailaja Gangadhara ◽  
Venkata Viswanadh Edara ◽  
...  

AbstractThere is a great need for the development of vaccines that induce potent and long-lasting protective immunity against SARS-CoV-2. Multimeric display of the antigen combined with potent adjuvant can enhance the potency and longevity of the antibody response. The receptor binding domain (RBD) of the spike protein is a primary target of neutralizing antibodies. Here, we developed a trimeric form of the RBD and show that it induces a potent neutralizing antibody response against live virus with diverse effector functions and provides protection against SARS-CoV-2 challenge in mice and rhesus macaques. The trimeric form induces higher neutralizing antibody titer compared to monomer with as low as 1μg antigen dose. In mice, adjuvanting the protein with a TLR7/8 agonist formulation alum-3M-052 induces 100-fold higher neutralizing antibody titer and superior protection from infection compared to alum. SARS-CoV-2 infection causes significant loss of innate cells and pathology in the lung, and vaccination protects from changes in innate cells and lung pathology. These results demonstrate RBD trimer protein as a suitable candidate for vaccine against SARS-CoV-2.


2005 ◽  
Vol 86 (5) ◽  
pp. 1435-1440 ◽  
Author(s):  
Milosz Faber ◽  
Elaine W. Lamirande ◽  
Anjeanette Roberts ◽  
Amy B. Rice ◽  
Hilary Koprowski ◽  
...  

Foreign viral proteins expressed by rabies virus (RV) have been shown to induce potent humoral and cellular immune responses in immunized animals. In addition, highly attenuated and, therefore, very safe RV-based vectors have been constructed. Here, an RV-based vaccine vehicle was utilized as a novel vaccine against severe acute respiratory syndrome coronavirus (SARS-CoV). For this approach, the SARS-CoV nucleocapsid protein (N) or envelope spike protein (S) genes were cloned between the RV glycoprotein G and polymerase L genes. Recombinant vectors expressing SARS-CoV N or S protein were recovered and their immunogenicity was studied in mice. A single inoculation with the RV-based vaccine expressing SARS-CoV S protein induced a strong SARS-CoV-neutralizing antibody response. The ability of the RV-SARS-CoV S vector to confer immunity after a single inoculation makes this live vaccine a promising candidate for eradication of SARS-CoV in animal reservoirs, thereby reducing the risk of transmitting the infection to humans.


2017 ◽  
Vol 91 (13) ◽  
Author(s):  
Normand Blais ◽  
Martin Gagné ◽  
Yoshitomo Hamuro ◽  
Patrick Rheault ◽  
Martine Boyer ◽  
...  

ABSTRACT The human respiratory syncytial virus (hRSV) fusion (F) protein is considered a major target of the neutralizing antibody response to hRSV. This glycoprotein undergoes a major structural shift from the prefusion (pre-F) to the postfusion (post-F) state at the time of virus-host cell membrane fusion. Recent evidences suggest that the pre-F state is a superior target for neutralizing antibodies compared to the post-F state. Therefore, for vaccine purposes, we have designed and characterized a recombinant hRSV F protein, called Pre-F-GCN4t, stabilized in a pre-F conformation. To show that Pre-F-GCN4t does not switch to a post-F conformation, it was compared with a recombinant post-F molecule, called Post-F-XC. Pre-F-GCN4t was glycosylated and trimeric and displayed a conformational stability different from that of Post-F-XC, as shown by chemical denaturation. Electron microscopy analysis suggested that Pre-F-GCN4t adopts a lollipop-like structure. In contrast, Post-F-XC had a typical elongated conical shape. Hydrogen/deuterium exchange mass spectrometry demonstrated that the two molecules had common rigid folding core and dynamic regions and provided structural insight for their biophysical and biochemical properties and reactivity. Pre-F-GCN4t was shown to deplete hRSV-neutralizing antibodies from human serum more efficiently than Post-F-XC. Importantly, Pre-F-GCN4t was also shown to bind D25, a highly potent monoclonal antibody specific for the pre-F conformation. In conclusion, this construct presents several pre-F characteristics, does not switch to the post-F conformation, and presents antigenic features required for a protective neutralizing antibody response. Therefore, Pre-F-GCN4t can be considered a promising candidate vaccine antigen. IMPORTANCE Human respiratory syncytial virus (RSV) is a global leading cause of infant mortality and adult morbidity. The development of a safe and efficacious RSV vaccine remains an important goal. The RSV class I fusion (F) glycoprotein is considered one of the most promising vaccine candidates, and recent evidences suggest that the prefusion (pre-F) state is a superior target for neutralizing antibodies. Our study presents the physicochemical characterization of Pre-F-GCN4t, a molecule designed to be stabilized in the pre-F conformation. To confirm its pre-F conformation, Pre-F-GCN4t was analyzed in parallel with Post-F-XC, a molecule in the post-F conformation. Our results show that Pre-F-GCN4t presents characteristics of a stabilized pre-F conformation and support its use as an RSV vaccine antigen. Such an antigen may represent a significant advance in the development of an RSV vaccine.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tybbysay P. Salinas ◽  
Jose L. Garrido ◽  
Jacqueline R. Salazar ◽  
Publio Gonzalez ◽  
Nicole Zambrano ◽  
...  

BackgroundNew World Hantaviruses (NWHs) are the etiological agent underlying hantavirus cardiopulmonary syndrome (HCPS), a severe respiratory disease with high mortality rates in humans. In Panama, infections with Choclo Orthohantavirus (CHOV) cause a much milder illness characterized by higher seroprevalence and lower mortality rates. To date, the cytokine profiles and antibody responses associated with this milder form of HCPS have not been defined. Therefore, in this study, we examined immune serological profiles associated with CHOV infections.MethodsFor this retrospective study, sera from fifteen individuals with acute CHOV-induced HCPS, were analyzed alongside sera from fifteen convalescent phase individuals and thirty-three asymptomatic, CHOV-seropositive individuals. Cytokine profiles were analyzed by multiplex immunoassay. Antibody subclasses, binding, and neutralization against CHOV-glycoprotein (CHOV-GP) were evaluated by ELISA, and flow cytometry.ResultsHigh titers of IFNγ, IL-4, IL-8, and IL-10 serum cytokines were found in the acute individuals. Elevated IL-4 serum levels were found in convalescent and asymptomatic seropositive individuals. High titers of IgG1 subclass were observed across the three cohorts analyzed. Neutralizing antibody response against CHOV-GP was detectable in few acute individuals but was strong in both convalescent and asymptomatic seropositive individuals.ConclusionA Th1/Th2 cytokine signature is characteristic during acute mild HCPS caused by CHOV infection. High expression of Th2 and IL-8 cytokines are correlated with clinical parameters in acute mild HCPS. In addition, a strong IL-4 signature is associated with different cohorts, including asymptomatic individuals. Furthermore, asymptomatic individuals presented high titers of neutralizing antibodies.


Sign in / Sign up

Export Citation Format

Share Document