cell entry
Recently Published Documents


TOTAL DOCUMENTS

1202
(FIVE YEARS 443)

H-INDEX

93
(FIVE YEARS 25)

2022 ◽  
Author(s):  
Edward E Large ◽  
Mark A Silveria ◽  
Tommi A White ◽  
Michael S Chapman

Adeno-associated virus (AAV) is a small ssDNA satellite virus of high interest (in recombinant form) as a safe and effective gene therapy vector. AAV's human cell entry receptor (AAVR) contains Polycystic Kidney Disease (PKD) domains bound by AAV. Seeking understanding of the spectrum of interactions, goat AAVGo.1 is investigated, because its host is the species most distant from human with reciprocal cross-species cell susceptibility. The structure of AAVGo.1, solved by cryo-EM to 2.9 Å resolution, is most similar to AAV5. Through ELISA studies, it is shown that AAVGo.1 binds to human AAVR (huAAVR) more strongly than do AAV2 or AAV5, and that it joins AAV5 in a class that binds exclusively to PKD domain 1 (PKD1), in contrast to other AAVs that interact primarily with PKD2. The AAVGo.1 cryo-EM structure of a complex with a PKD12 fragment of huAAVR at 2.4 Å resolution shows PKD1 bound with minimal change in virus structure, except for disordering of a neighboring surface loop. Only 4 of the 42 capsid protein sequence differences between AAVGo.1 and AAV5 occur at the PKD1 binding interface. These result in only minor conformational changes in AAVR, including a near rigid domain rotation with maximal displacement of the receptor by ~1 Å. A picture emerges of two classes of AAV with completely different modes of binding to the same AAVR receptor, but within each class atomic interactions are mostly conserved. IMPORTANCE Adeno-Associated Virus (AAV) is a small ssDNA satellite parvovirus. As a recombinant vector with a protein shell encapsidating a transgene, recombinant AAV (rAAV) is a leading delivery vehicle for gene therapy with two FDA-approved treatments and 150 clinical trials for 30 diseases. The human entry receptor huAAVR has five PKD domains. To date, all serotypes, except AAV5, have interacted primarily with the second PKD domain, PKD2. Goat is the AAV host most distant from human with cross-species cell infectivity. AAVGo.1 is similar in structure to AAV5, the two forming a class with a distinct mode of receptor-binding. Within the two classes, binding interactions are mostly conserved, giving an indication of the latitude available in modulating delivery vectors.


2022 ◽  
Author(s):  
Bo Tang ◽  
En-Ze Sun ◽  
Zhi-Ling Zhang ◽  
Shu-Lin Liu ◽  
Jia Liu ◽  
...  

Influenza A virus (IAV) is a global health threat. The cellular endocytic machineries harnessed by IAV remain elusive. Here, by tracking single IAV particles and quantifying the internalized IAV, we found that the sphingomyelin (SM)-sequestered cholesterol, but not the accessible cholesterol, is essential for the clathrin-mediated endocytosis (CME) of IAV. The clathrin-independent endocytosis of IAV is cholesterol-independent. Whereas, the CME of transferrin depends on SM-sequestered cholesterol and accessible cholesterol. Furthermore, three-color single-virus tracking and electron microscopy showed that the SM-cholesterol complex nanodomain is recruited to the IAV-containing clathrin-coated structure (CCS) and facilitates neck constriction of the IAV-containing CCS. Meanwhile, formin-binding protein 17 (FBP17), a membrane-bending protein which activates actin nucleation, is recruited to IAV-CCS complex in a manner dependent on the SM-cholesterol complex. We propose that the SM-cholesterol nanodomain at the neck of CCS recruits FBP17 to induce neck constriction by activating actin assembly. These results unequivocally show the physiological importance of the SM-cholesterol complex in IAV entry. Importance: IAV infects the cells by harnessing cellular endocytic machineries. Better understanding of the cellular machineries used for its entry might lead to the development of antiviral strategies, and would also provide important insights into physiological endocytic processes. This work demonstrated that a special pool of cholesterol in plasma membrane, SM-sequestered cholesterol, recruits FBP17 for the constriction of clathrin-coated pits in IAV entry. Meanwhile, the clathrin-independent cell entry of IAV is cholesterol-independent. The internalization of transferrin, the gold-standard cargo endocytosed solely via CME, is much less dependent on the SM-cholesterol complex. These results would provide new insights into IAV infection and pathway/cargo-specific involvement of cholesterol pool(s).


2022 ◽  
Author(s):  
Wei Liu ◽  
Mohamad-Gabriel Alameh ◽  
June F. Yang ◽  
Jonathan R. Xu ◽  
Paulo JC Lin ◽  
...  

Treating immunosuppressive tumors represents a major challenge in cancer therapies. Activation of STING signaling has shown remarkable potential to invigorate the immunologically 'cold' tumor microenvironment (TME). However, we and others have shown that STING is silenced in many cancers, including pancreatic ductal adenocarcinoma (PDAC) and Merkel cell carcinoma (MCC), both of which are associated with an immune-dampened TME. In this study, we applied mRNA lipid nanoparticles (LNP) to deliver a permanently active gain-of-function STINGR284S mutant into PDAC and MCC cells. Expression of STINGR284S induces cytokines and chemokines crucial for promoting intratumoral infiltration of CD8+ T cells and, importantly, also leads to robust cancer cell death while avoiding T cell entry and toxicity. Our studies demonstrated that mRNA-LNP delivery of STINGR284S could be explored as a novel therapeutic tool to reactivate antitumor response in an array of STING-deficient cancers while overcoming the toxicity and limitations of conventional STING agonists.


2022 ◽  
pp. 194589242110596
Author(s):  
Tomohiro Kawasumi ◽  
Sachio Takeno ◽  
Takashi Ishino ◽  
Tsutomu Ueda ◽  
Takao Hamamoto ◽  
...  

Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses angiotensin-converting enzyme-2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) as a primary receptor for invasion. Cell entry by the virus requires the co-expression of these molecules in the host cells. Objective We investigated ACE2 and TMPRSS2 expression and localization in paranasal epithelium of eosinophilic chronic rhinosinusitis (ECRS) patients (n = 38), non-ECRS (n = 31), and healthy controls (n = 25). CRS inflammatory patterns are characterized by the type of cytokines; we investigated whether inflammatory endotypes are associated with cell-entry molecules, as this could be linked to susceptibility to SARS-CoV-2 infection. Methods The ACE2, TMPRSS2, and other inflammatory cytokine mRNA levels were assessed by quantitative RT-PCR. The localizations of ACE2- and TMPRSS2-positive cells were examined with immunofluorescent double-staining using laser scanning confocal microscopy (LSCM). Results The non-ECRS patients showed significantly increased ACE2 and TMPRSS2 mRNA expressions compared to the ECRS patients. The CRS patients’ ACE2 and TMPRSS2 mRNA levels were positively correlated with IFN-γ ( r = 0.3227 and r = 0.3264, respectively) and TNF-α ( r = 0.4008, r = 0.3962, respectively). ACE2 and TMPRSS2 were negatively correlated with tissue eosinophils ( r =  −0.3308, r =  −0.3112, respectively), but not with IL-13. ACE2 mRNA levels were positively correlated with TMPRSS2 ( r = 0.7478). ACE2 and TMPRSS2 immunoreactivities were localized mainly in the epithelial ciliated cells, as confirmed by co-staining with TMPRSS2 and acetylated α-tubulin, a cilia organelle marker. Using LSCM imaging, we observed higher expressions of these molecules in the non-ECRS patients versus the ECRS patients. Conclusion ECRS patients with type 2 inflammation showed decreased ACE2 and TMPRSS2 expressions in their sinus mucosa. ACE2 and TMPRSS2 regulation seems to be positively related to IFN-γ and TNF-α production in CRS patients; ACE2 and TMPRSS2 were co-expressed in the ciliated epithelium of their paranasal mucosa, implicating the paranasal epithelium as a portal for initial infection and transmission.


2022 ◽  
Vol 14 (626) ◽  
Author(s):  
Sachin P. Gadani ◽  
Michael D. Kornberg
Keyword(s):  

Author(s):  
Prerna Arora ◽  
Amy Kempf ◽  
Inga Nehlmeier ◽  
Luise Graichen ◽  
Martin S. Winkler ◽  
...  

Since the beginning of the COVID-19 pandemic, multiple SARS-CoV-2 variants have emerged. While some variants spread only locally, others, referred to as variants of concern, disseminated globally and became drivers of the pandemic. All SARS-CoV-2 variants harbor mutations relative to the virus circulating early in the pandemic, and mutations in the viral spike (S) protein are considered of particular relevance since the S protein mediates host cell entry and constitutes the key target of the neutralizing antibody response. As a consequence, mutations in the S protein may increase SARS-CoV-2 infectivity and enable its evasion of neutralizing antibodies. Furthermore, mutations in the S protein can modulate viral transmissibility and pathogenicity.


2022 ◽  
Author(s):  
Brian J Willett ◽  
Joe Grove ◽  
Oscar MacLean ◽  
Craig Wilkie ◽  
Nicola Logan ◽  
...  

Vaccination-based exposure to spike protein derived from early SARS-CoV-2 sequences is the key public health strategy against COVID-19. Successive waves of SARS-CoV-2 infections have been characterised by the evolution of highly mutated variants that are more transmissible and that partially evade the adaptive immune response. Omicron is the fifth of these Variants of Concern (VOCs) and is characterised by a step change in transmission capability, suggesting significant antigenic and biological change. It is characterised by 45 amino acid substitutions, including 30 changes in the spike protein relative to one of the earliest sequences, Wuhan-Hu-1, of which 15 occur in the receptor-binding domain, an area strongly associated with humoral immune evasion. In this study, we demonstrate both markedly decreased neutralisation in serology assays and real-world vaccine effectiveness in recipients of two doses of vaccine, with efficacy partially recovered by a third mRNA booster dose. We also show that immunity from natural infection (without vaccination) is more protective than two doses of vaccine but inferior to three doses. Finally, we demonstrate fundamental changes in the Omicron entry process in vitro, towards TMPRSS2-independent fusion, representing a major shift in the replication properties of SARS-CoV-2. Overall, these findings underlie rapid global transmission and may alter the clinical severity of disease associated with the Omicron variant.


2022 ◽  
Author(s):  
Danielle Nader ◽  
Timothy E Gressett ◽  
Md Lokman Hossen ◽  
Prem P Chapagain ◽  
Steven W. Kerrigan ◽  
...  

In addition to the ACE2 receptor, SARS-CoV-2 binds to integrins to gain host cell entry and trigger pro-inflammatory integrin-mediated signalling cascades. Integrins, therefore, are likely candidates for a dual-receptor mechanism with ACE2 to explain the increased infectivity seen in SARS-CoV-2 models. As integrins are primarily expressed in vasculature and persistent vasculopathy is seen in COVID-19, examining the role of endothelial integrin involvement is crucial in uncovering the pathophysiology of SARS-CoV-2.


2021 ◽  
Vol 14 (4) ◽  
pp. 1929-1939
Author(s):  
Malathi Kullappan ◽  
Jenifer M Ambrose ◽  
Surapaneni Krishna Mohan

COVID-19, a pandemic disease caused by single-stranded RNA virus Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The structural spike (S) protein of SARS-CoV-2 plays a vital role in host cell entry, where the Angiotensin-Converting Enzyme-2 (ACE2) receptor of the human cell binds to the Receptor Binding Domain (RBD) region of the S1 domain and makes cell entry. The binding affinity of SARS-CoV-2-ACE2 is tenfold higher than the SARS-CoV-1-ACE2. Recent studies expose that the SARS-CoV-2 S D614G variant is highly infectious than D614 protein, also the D614G variant is highly stable than D614. So far, there is no effective viral-specific regimen for COVID-19. To overcome such problems, in our study, we have utilized the ZINC database to screen potent leads against the highly transmitting SARS-CoV-2 spike D614G protein, through a virtual screening procedure. We have applied three computational tools iGEMDOCK server, AutoDock version 4.2.6 and admetSAR to get active leads. The ZINC000150588351 (Elbasvir), ZINC000064540179 (Sofosbuvir analogue) and ZINC000137700912 (Sofosbuvir analogue) molecules have a greater binding affinity with the high binding energies of -8.22 kcal/mol, -8.13 kcal/mol and -7.64 kcal/mol respectively. The molecules ZINC000064540179 and ZINC000137700912 have high binding energy than their core molecule Sofosbuvir (ZINC100074252) of -4.06 kcal/mol. The ADMET prediction of these molecules reveals satisfactory human intestinal absorption and non-mutagenic property. Our results deliver valuable contributions to the design of inhibitors against COVID-19.


Sign in / Sign up

Export Citation Format

Share Document