Non-local dxy nematicity and the missing electron pocket in FeSe
AbstractThe origin of spontaneous electronic nematic ordering provides important information for understanding iron-based superconductors. Here, we analyze a scenario where the dxy orbital strongly contributes to nematic ordering in FeSe. We show that the addition of dxy nematicity to a pure dxz/dyz order provides a natural explanation for the unusual Fermi surface and correctly reproduces the strongly anisotropic momentum dependence of the superconducting gap. We predict a Lifshitz transition of an electron pocket mediated by temperature and sulfur doping, whose signatures we discuss by analysing available experimental data. We present the variation of momentum dependence of the superconducting gap upon suppression of nematicity. Our quantitatively accurate model yields the transition from tetragonal to nematic FeSe and the FeSe1−xSx series, and puts strong constraints on possible nematic mechanisms.