A brief review of the results of studies of the effect of gravity in inhomogeneous substance near a critical state of a critical fluid (CF) has been presented in paper, based on the data of light scattering, refractometry, and slow neutron transmission methods.Based on these data, the field-altitude asymmetry of various properties of an inhomogeneous substance has been analyzed, namely order parameter Dr(z), scattered light intensity I(z), density gradient dr(z)/dz of the substance. It had been shown that the field-altitude asymmetries of the scattered light intensity I(z)~dr/dm(h) and the density gradient dr(z)/dz~dr/dh(h) of the substance are diametrically opposite. The different altitudinal asymmetry of these quantities dr/dh(h) and dr/dm(h) is explained in paper by the altitude asymmetry of the derivative of the chemical potential dm/dh, and hence with the altitude asymmetry of the chemical potential Dm(h)>>h in the external field h.To the present time, the physical mechanism of the altitude asymmetry of the gravity effect has not been studied. In this regard the mechanism of the formation of the vertical asymmetry of the internal critical field Dm(h) has proposed in paper to be associated with the kinetic characteristics of the inhomogeneous critical fluid: the diffusion coefficients D (h) and viscosity coefficients h(h), when the system passes from a homogeneous state to an inhomogeneous one under the action of an internal asymmetric fields |DU(z)|= |Dm(z)|>>|h=rcgz/Pc|. For this purpose, a high-pressure cell with a height L, with a critical filling density of the substance is considered in paper.It has been shown that when the system is under critical density filling by substance =rc the critical level of substance z = 0 with the critical density rc at the critical temperature Tc is realized above the middle of the sample with an inhomogeneous substance. Based on the literature data of P-V-T-measurements and the gravity effect in benzene and ethane, the values of the altitudinal change in the internal critical field have been found. It has been shown that the value of the critical internal inhomogeneous field in the inhomogeneous critical fluid significantly exceeds the variable of the Earth's gravity |DU(h,Tc)|= |Dm(h,Tc)>>|h| It has been also shown that the magnitude of this field according to the cubic law depends on the critical temperature Tc of the substance: |Dm(z,Tc1)/|Dm(z,Tc2) » (Tc1/Tc2)3.