scholarly journals Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Melody S. Clark ◽  
Coleen C. Suckling ◽  
Alessandro Cavallo ◽  
Clara L. Mackenzie ◽  
Michael A. S. Thorne ◽  
...  

Sequencing of cloned histone DNA of the sea urchin Psammechinus miliaris has confirmed the map of the histone genes obtained earlier by rather less refined techniques. Sequencing of spacer has revealed that it is unlikely to code for protein. Some interesting sequences in the prelude regions to the structural genes have been found. The technique of injecting DNA into the germinal vesicle of the Xenopus oocyte has been greatly simplified, so that now many of the parameters governing the transcription of the injected genes can be investigated. Some mRNA-like molecules appear when circular histone DNA is inserted into the oocyte nucleus. We are cautiously optimistic that the technique can be further developed and will provide a useful tool for the study of the molecular mechanisms governing the expression of structural genes coding for proteins.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 63 ◽  
Author(s):  
Nunzia Limatola ◽  
Filip Vasilev ◽  
Luigia Santella ◽  
Jong Tai Chun

While alkaloids often exert unique pharmacological effects on animal cells, exposure of sea urchin eggs to nicotine causes polyspermy at fertilization in a dose-dependent manner. Here, we studied molecular mechanisms underlying the phenomenon. Although nicotine is an agonist of ionotropic acetylcholine receptors, we found that nicotine-induced polyspermy was neither mimicked by acetylcholine and carbachol nor inhibited by specific antagonists of nicotinic acetylcholine receptors. Unlike acetylcholine and carbachol, nicotine uniquely induced drastic rearrangement of egg cortical microfilaments in a dose-dependent way. Such cytoskeletal changes appeared to render the eggs more receptive to sperm, as judged by the significant alleviation of polyspermy by latrunculin-A and mycalolide-B. In addition, our fluorimetric assay provided the first evidence that nicotine directly accelerates polymerization kinetics of G-actin and attenuates depolymerization of preassembled F-actin. Furthermore, nicotine inhibited cofilin-induced disassembly of F-actin. Unexpectedly, our results suggest that effects of nicotine can also be mediated in some non-cholinergic pathways.


2014 ◽  
Vol 7 (1) ◽  
pp. 699 ◽  
Author(s):  
Marc B Anglès d’Auriac ◽  
Anders Hobæk ◽  
Hartvig Christie ◽  
Hege Gundersen ◽  
Camilla Fagerli ◽  
...  

2021 ◽  
Author(s):  
Jonathan Hira ◽  
Klara Stensvåg

Abstract “Sea urchin lesion syndrome” is known as sea urchins disease with the progressive development of necrotic epidermal tissue and loss of external organs, including appendages on the outer body surface. Recently, a novel strain, Vibrio echinoideorum has been isolated from the lesions of green sea urchin (Strongylocentrotus droebachiensis), an economically important mariculture species in Norway. V. echinoideorum has not been reported elsewhere in association of with green sea urchin lesion syndrome. Therefore, in this study, an immersion based bacterial challenge experiment was performed to expose sea urchins (wounded and non-wounded) to V. echinoideorum, thereby mimicking a nearly natural host-pathogen interaction under controlled conditions. This infection experiment demonstrated that only the injured sea urchins developed the lesion to a significant degree when exposed to V. echinoideorum. Pure cultures of the employed bacterial strain was recovered from the infected animals and its identity was confirmed by the MALDI-TOF MS spectra profiling. Additionally, the hemolytic phenotype of V. echinoideorum substantiated its virulence potential towards the host, and this was also supported by the cytolytic effect on red spherule cells of sea urchins. Furthermore, the genome sequence of V. echinoideorum was assumed to encode potential virulence genes and were subjected for in silico comparison with the established virulence factors of Vibrio vulnificus and Vibrio tasmaniensis. This comparative virulence profile provided novel insights about virulence genes and their putative functions related to chemotaxis, adherence, invasion, evasion of the host immune system, and damage of host tissue and cells. Thus, it supports the pathogenicity of V. echinoideorum. In conclusion, the interaction of V. echinoideorum with injured sea urchins appears to be essential for the development of lesion syndrome and therefore, revealing its potentiality as an opportunistic pathogen.


1953 ◽  
Vol s3-94 (28) ◽  
pp. 369-379
Author(s):  
M. M. SWANN

1. Developing eggs of the sea-urchin Psammechinus miliaris were subjected to carbon monoxide inhibition, which was controlled by changing from green to white light. The behaviour of the eggs was recorded by time-lapse photography. 2. If inhibition is applied before the eggs enter mitosis, their first cleavage is delayed by a time which is roughly equal to the period of the inhibition. 3. If the inhibition is applied when the cells have already entered mitosis, they complete mitosis and cleave with little or no delay, but their second cleavage is delayed by a time which is roughly equal to the period of the inhibition. 4. It is suggested that the necessary energy for the second mitosis and cleavage is being stored up during the first mitosis and cleavage, and that this energy store operates like a reservoir which is continually being filled but siphons out when it is full. Once the energy has siphoned out, it carries mitosis and cleavage through, even though the reservoir is not filling up because of carbon monoxide inhibition.


Sign in / Sign up

Export Citation Format

Share Document