scholarly journals The Human Transient Receptor Potential Melastatin 2 Ion Channel Modulates ROS Through Nrf2

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lei Bao ◽  
Fernanda Festa ◽  
Christopher S. Freet ◽  
John P. Lee ◽  
Iwona M. Hirschler-Laszkiewicz ◽  
...  

Abstract Transient receptor potential melastatin channel subfamily member 2 (TRPM2) has an essential role in protecting cell viability through modulation of oxidative stress. TRPM2 is highly expressed in cancer. When TRPM2 is inhibited, mitochondria are dysfunctional, ROS levels are increased, and cell viability is reduced. Here, the importance of NF-E2-related factor (Nrf2) in TRPM2-mediated suppression of oxidant stress was explored. In TRPM2 depleted cells, antioxidant cofactors glutathione, NADPH, and NADH were significantly reduced. Cytoplasmic and nuclear expression of Nrf2 and of IQGAP1, a modulator of Nrf2 stability regulated by intracellular calcium, were decreased. Antioxidant enzymes transcriptionally regulated by Nrf2 and involved in GSH, NADPH, and NADH generation were significantly lower including PRX1 and PRX3, GPX4, GSTP1, GCLC, and MTHFD2. The glutamine pathway leading to GSH production was suppressed, and ATP and GTP levels were impaired. Reconstitution with wild type TRPM2 or Nrf2, but not TRPM2 pore mutant E960D, rescued expression of enzymes downstream of Nrf2 and restored GSH and GTP. Cell viability, ROS, NADPH, NADH, and ATP levels were fully rescued by TRPM2 and partially by Nrf2. These data show that TRPM2 maintains cell survival following oxidative stress through modulation of antioxidant pathways and cofactors regulated by Nrf2.

2021 ◽  
Vol 11 (4) ◽  
pp. 736-742
Author(s):  
Bo Huang ◽  
Xuecheng Sun ◽  
Aie Xu

Background: Oxidative stress was reported to be involved in the progression of vitiligo. microRNAs (miRNAs) have been confirmed to display critical roles in vitiligo. In this study, we conjectured that miR-145-5p might be related to the development of vitiligo by regulating the key genes expression in melanocytes. Methods: H2O2 was used to induce the dysfunction of melanocytes. The levels of TRPM2 and miR-145-5p in H2O2-induced human primary melanocytes were assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). TargetScan and Dual luciferase reporter gene assay were conducted to confirm the correlation between miR-145-5p and TRPM2. Cell viability and apoptosis were determined using MTT and Flow cytometry analysis. Reactive oxygen species (ROS), antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were determined using specific assay kits. The levels of cleaved caspase-3 and pro-Caspase3 were measure by western blotting. Results: TRPM2 was upregulated while miR-145-5p was downregulated in H2O2-induced human primary melanocytes. Dual luciferase reporter assay confirmed that TRPM2 was a target gene of miR-145-5p. miR-145-5p mimic transfection significantly increased cell viability and inhibited cell apoptosis in H2O2-treated melanocytes. In addition, overexpression of miR-145-5p enhanced the antioxidant activity of SOD and CAT, and decreased intracellular ROS accumulation. Notably, these findings were abolished by TRPM2-plasmid. Conclusions: Taken together, our study demonstrated that oxidative stress induced up-regulation of TRPM2 and down-regulation of miR-145-5p in melanocytes. In addition, overexpression of miR-145-5p alleviated melanocytes destruction via targeting TRPM2. These results indicated that miR-145-5p might serve as a potential target for anti-oxidative therapy in vitiligo.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Jing Wang ◽  
Michael F. Jackson ◽  
Yu-Feng Xie

Synaptic plasticity refers to the ability of neurons to strengthen or weaken synaptic efficacy in response to activity and is the basis for learning and memory. Glial cells communicate with neurons and in this way contribute in part to plasticity in the CNS and to the pathology of Alzheimer’s disease (AD), a neurodegenerative disease in which impaired synaptic plasticity is causally implicated. The transient receptor potential melastatin member 2 (TRPM2) channel is a nonselective Ca2+-permeable channel expressed in both glial cells (microglia and astrocytes) and neurons. Recent studies indicated that TRPM2 regulates synaptic plasticity as well as the activation of glial cells. TRPM2 also modulates oxidative stress and inflammation through interaction with glial cells. As both oxidative stress and inflammation have been implicated in AD pathology, this suggests a possible contribution of TRPM2 to disease processes. Through modulating the homeostasis of glutathione, TRPM2 is involved in the process of aging which is a risk factor of AD. These results potentially point TRPM2 channel to be involved in AD through glial cells. This review summarizes recent advances in studying the contribution of TRPM2 in health and in AD pathology, with a focus on contributions via glia cells.


2017 ◽  
Vol 41 (2) ◽  
pp. 835-848 ◽  
Author(s):  
Xiao-Qing Ding ◽  
Tao Ban ◽  
Zeng-Yan Liu ◽  
Jie Lou ◽  
Liang-Liang Tang ◽  
...  

Background/Aims: The present study investigated whether the transient receptor potential melastatin 4 (TRPM4) channel plays a role in high salt diet (HSD)-induced endothelial injuries. Methods: Western blotting and immunofluorescence were used to examine TRPM4 expression in the mesenteric endothelium of Dahl salt-sensitive (SS) rats fed a HSD. The MTT, TUNEL, and transwell assays were used to evaluate the cell viability, cell apoptosis, and cell migration, respectively, of human umbilical vein endothelial cells (HUVECs). Enzyme-linked immunosorbent assays were used to determine the concentrations of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein 1 (VCAM-1), and E-selectin. Carboxy-H2DCFDA, a membrane-permeable reactive oxygen species (ROS)-sensitive fluorescent probe, was used to detect intracellular ROS levels. Results: TRPM4 was mainly expressed near the plasma membrane of mesenteric artery endothelial cells, and its expression level increased in SS hypertensive rats fed a HSD. Its protein expression was significantly upregulated upon treatment with exogenous hydrogen peroxide (H2O2) and aldosterone in cultured HUVECs. Cell viability decreased upon treatment with both agents in a concentration-dependent manner, which could be partially reversed by 9-phenanthrol, a specific TRPM4 inhibitor. Exogenous H2O2 induced apoptosis, enhanced cell migration, and increased the release of adhesion molecules, including ICAM-1, VCAM-1, and E-selectin, all of which were significantly attenuated upon treatment with 9-phenanthrol. Aldosterone and H2O2 induced the accumulation of intracellular ROS, which was significantly inhibited by 9-phenanthrol, suggesting that oxidative stress is one of the mechanisms underlying aldosterone-induced endothelial injury. Conclusions: Given the fact that oxidative stress and high levels of circulating aldosterone are present in hypertensive patients, we suggest that the upregulation of TRPM4 in the vascular endothelium may be involved in endothelial injuries caused by these stimuli.


2009 ◽  
Vol 101 (04) ◽  
pp. 619-625 ◽  
Author(s):  
Claudie Hecquet ◽  
Asrar Malik

SummaryThe transient receptor potential (melastatin) 2 (TRPM2), is an oxidant-activated non-selective cation channel that is widely expressed in mammalian tissues including the vascular endothelium. Oxidative stress, through the generation of oxygen meta-bolites including H2O2, stimulates intracellular ADP-ribose formation which, in turn, opens TRPM2 channels. These channels act as an endogenous redox sensor for mediating oxidative stress/ROS-induced Ca2+ entry and the subsequent specific Ca2+-dependent cellular reactions such as endothelial hyper-permeability and apoptosis. This review summarizes recent findings on the mechanism by which oxidants induce TRPM2 activation, the role of these channels in the signalling vascular endothelial dysfunctions, and the modulation of oxidant-induced TRPM2 activation by PKCα and phospho-tyrosine phosphates L1.


2022 ◽  
Vol 12 (2) ◽  
pp. 373-380
Author(s):  
Xuecheng Sun ◽  
Tao Wang ◽  
Bo Huang ◽  
Gaobo Ruan ◽  
Jun Huang ◽  
...  

Background: Vitiligo, a chronic, autoimmune destruction of melanocytes, caused by the disappearance of epidermal melanocytes, but the mechanism is not fully understood. Although emerging evidence demonstrated that abnormal regulation of microRNAs (miRNAs) were associated with the pathogenesis of diseases, the functions of miR-637 in vitiligo remain unclear. Objective: This research was designed to explore the potential roles of miR-637 in hydrogen peroxide (H2O2)-induced human primary melanocytes in vitiligo. Methods: Human primary melanocytes were induced by 250 μmol/L H2O2 for 4 h to establish oxidative injury of melanocytes model. Cell viability and apoptosis analyzed by MTT and flow cytometry assay, respectively. The relevance between miR-637 and transient receptor potential melastatin 2 (TRPM2) was checked using TargetScan and dual luciferase reporter gene assay. The expression of miR-637 and TRPM2 was evaluated using qRT-PCR and/or Western blot analysis. Reactive oxygen species (ROS) accumulation, superoxide dismutase (SOD) and catalase (CAT) activities were measured using specific assay kits. In addition, the expression of Bcl-2 and Bax were evaluated using Western blot assay. Results: TRPM2 was up-regulated, while miR-637 was down-regulated in H2O2-stimulated human primary melanocytes. TRPM2 directly interacted with miR-637. Up-regulation of miR-637 memorably increased miR-637 level and inhibited TRPM2 expression. Furthermore, miR-637 mimic fortified cell viability, reduced apoptotic cells, enhanced Bcl-2 expression, reduced Bax level, as well as inhibited the ratio of Bax/Bcl-2 in H2O2-induced melanocytes. Meanwhile, miR-637 mimic obviously suppressed the accumulation of ROS and increased SOD and CAT activity. Nevertheless, all these findings were inverted by TRPM2-plasmid. Likewise, TRPM2-siRNA led to increased cell viability, reduced apoptotic cells, enhanced Bcl-2 expression, reduced Bax level, inhibited Bax/Bcl-2 ratio, inhibited ROS production, but increased SOD and CAT activity in H2O2-induced melanocytes. Conclusion: Our findings suggested that TRPM2 was up-regulated, while miR-637 was down-regulated in injurious melanocytes of vitiligo. Up-regulation of miR-637 relieved oxidative stress-stimulated melanocyte injury via down-regulating TRPM2 expression. Our results provide new insights into the functions of miR-637 in the development of vitiligo, indicating that miR-637 may be a latent target for vitiligo therapy.


2020 ◽  
Author(s):  
Chinatsu Shiraki ◽  
Ririka Horikawa ◽  
Momoka Fujimoto ◽  
Kaho Okamoto ◽  
Erkin Kurganov ◽  
...  

Abstract Transient receptor potential melastatin 8 (TRPM8) functions in the sensing of noxious and innocuous colds; however, its significance in pathogen-induced thermoregulation and inflammation remains unclear. In the present study, we investigated the role of TRPM8 in the regulation of endotoxin-induced body temperature control and inflammation. The peripheral administration of low-dose LPS or zymosan generated fever in wild-type (WT) mice and hypothermia in TRPM8 knockout (KO) animals. TRPM8 KO mice exhibited severe hypothermia and sickness responses following the peripheral administration of high-dose LPS. An intracerebroventricular injection of LPS and interleukin-1ß (Il-1ß) elicited hypothermia in TRPM8 KO mice, in contrast to fever in WT animals, whereas that of prostaglandin E2 induced normal fever. Fos immunohistochemistry showed the stronger activation of hypothalamic thermoregulation-associated nuclei following the peripheral administration of low-dose LPS. Therefore, TRPM8 is necessary for switching between fever and hypothermia during endotoxin-induced inflammation.


2018 ◽  
pp. 293-305 ◽  
Author(s):  
Z. JI ◽  
Z. WANG ◽  
Z. CHEN ◽  
H. JIN ◽  
C. CHEN ◽  
...  

The aim of this study was to investigate the effects of melatonin on oxidative stress, the expression of transient receptor potential melastatin-2 (TRPM2) in guinea pig brains, and the influence of melatonin on oxidative stress in lungs and airway inflammation induced by particulate matter 2.5 (PM2.5). A particle suspension (0.1 g/ml) was nasally administered to the guinea pigs to prepare a PM2.5 exposure model. Cough frequency and cough incubation period were determined through RM6240B biological signal collection and disposal system. Oxidative stress markers, including malondialdehyde (MDA), total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-Px), in the medulla oblongata were examined through spectrophotometer. Reactive oxygen species (ROS) were detected in the hypoglossal nucleus, cuneate nucleus, Botzinger complex, dorsal vagal complex, and airway through dihydroethidium fluorescence. Hematoxylin-eosin (HE) staining and substance P expression via immunohistochemistry revealed the inflammatory levels in the airway. TRPM2 was observed in the medulla oblongata through immunofluorescence and Western blot. The ultrastructure of the blood-brain barrier and neuronal mitochondria was determined by using a transmission electron microscope. Our study suggests that melatonin treatment decreased PM2.5-induced oxidative stress level in the brains and lungs and relieved airway inflammation and chronic cough. TRPM2 might participate in oxidative stress in the cough center by regulating cough.


Sign in / Sign up

Export Citation Format

Share Document