scholarly journals Identification and evolution of glucosinolate sulfatases in a specialist flea beetle

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Seung-Joon Ahn ◽  
Franziska Betzin ◽  
Matilda W. Gikonyo ◽  
Zhi-Ling Yang ◽  
Tobias G. Köllner ◽  
...  

Abstract Glucosinolates, a characteristic group of specialized metabolites found in Brassicales plants, are converted to toxic isothiocyanates upon herbivory. Several insect herbivores, including the cabbage stem flea beetle (Psylliodes chrysocephala), prevent glucosinolate activation by forming desulfo-glucosinolates. Here we investigated the molecular basis of glucosinolate desulfation in P. chrysocephala, an important pest of oilseed rape. Enzyme activity assays with crude beetle protein extracts revealed that glucosinolate sulfatase (GSS) activity is associated with the gut membrane and has narrow substrate specificity towards the benzenic glucosinolate sinalbin. In agreement with GSS activity localization in vivo, we identified six genes encoding arylsulfatase-like enzymes with a predicted C-terminal transmembrane domain, of which five showed GSS activity upon heterologous expression in insect cells. PcGSS1 and PcGSS2 used sinalbin and indol-3-ylmethyl glucosinolate as substrates, respectively, whereas PcGSS3, PcGSS4, and PcGSS5 showed weak activity in enzyme assays. RNAi-mediated knock-down of PcGSS1 and PcGSS2 expression in adult beetles confirmed their function in vivo. In a phylogenetic analysis of coleopteran and lepidopteran arylsulfatases, the P. chrysocephala GSSs formed a cluster within a coleopteran-specific sulfatase clade distant from the previously identified GSSs of the diamondback moth, Plutella xylostella, suggesting an independent evolution of GSS activity in ermine moths and flea beetles.

2002 ◽  
Vol 13 (1) ◽  
pp. 225-237 ◽  
Author(s):  
M. Bastaki ◽  
L. T. Braiterman ◽  
D. C. Johns ◽  
Y.-H. Chen ◽  
A. L. Hubbard

The absence of a direct route to the apical plasma membrane (PM) for single transmembrane domain (TMD) proteins in polarized hepatic cells has been inferred but never directly demonstrated. The genes encoding three pairs of apical PM proteins, whose extracellular domains are targeted exclusively to the apical milieu in Madin-Darby canine kidney cells, were packaged into recombinant adenovirus and delivered to WIF-B cells in vitro and liver hepatocytes in vivo. By immunofluorescence and pulse-chase metabolic labeling, we found that the soluble constructs were overwhelmingly secreted into the basolateral milieu, which in vivo is the blood and in vitro is the culture medium. The full-length proteins were first delivered to the basolateral surface but then concentrated in the apical PM. Our results imply that hepatic cells lack trans-Golgi network (TGN)-based machinery for directly sorting single transmembrane domain apical proteins and raise interesting questions about current models of PM protein sorting in polarized and nonpolarized cells.


2016 ◽  
Vol 31 (3-4) ◽  
pp. 139-144
Author(s):  
Lazar Sivcev ◽  
Draga Graora ◽  
Ivan Sivcev ◽  
Vladimir Tomic ◽  
Boris Dudic

The cabbage stem flea beetle (Psylliodes chrysocephala (L.) is an important pest of winter oilseed rape in Serbia. Beetles colonize oilseed rape in early October and are active in the field until first frost and wintertime. In autumn, adults can be seen laying eggs in the soil around plants. Larvae of P. chrysocephala developed intensively on leaf petioles in November, reaching their highest numbers at the end of the month. No infested plants were found in a conventional field, while 14.5% of all dissected leaf petioles were infested on an integrated field. On unprotected plants in an organic field, 76.0% of the plants were infested with larvae at the growth-stage BBCH 18-19, with 31.1% infested leaves on average. As a results, the number of plants was reduced by 51%, i.e. from 43.0/m2 recorded in the autumn to 22.0/m2 in the following spring. A new generation of P. chrysocephala beetles emerged from the soil in the first half of June and rapidly escaped the fields from almost dry plants. Our results showed that a part of the population stayed in aestivation and emerged in the following crop during the next season. On the following 5 March, 0.5 beetles/m2 were found in emergence cages in the organic field, while 0.81beetles/m2 were found in the former trap crop.


Weed Science ◽  
1998 ◽  
Vol 46 (5) ◽  
pp. 514-520 ◽  
Author(s):  
Matthew J. Foes ◽  
Lixin Liu ◽  
Patrick J. Tranel ◽  
Loyd M. Wax ◽  
Edward W. Stoller

A common waterhemp biotype that was not controlled by triazine or acetolactate synthase (ALS)-inhibiting herbicides was isolated from a field in Bond County, IL, in the fall of 1996. Greenhouse and laboratory experiments determined resistance to atrazine and three ALS-inhibiting herbicides in this biotype. Based on whole-plant response, the Bond County common waterhemp biotype required over 1,000 times more imazethapyr relative to a susceptible biotype to reduce growth 50%. Cross-resistance to thifensulfuron, a sulfonylurea, and flumetsulam, a triazolopyrimidine sulfonanilide, was also detected. Based on in vivo enzyme assays, ALS in the Bond County common waterhemp biotype was 20-, > 8-, and 68-fold less sensitive than ALS in the susceptible biotype to imazethapyr, thifensulfuron, and flumetsulam, respectively. Whole-plant efficacy trials also indicated that the Bond County common waterhemp biotype required more than 20 kg ha−1of atrazine to inhibit growth 50%. Chlorophyll fluorescence assays revealed that 100 nM atrazine inhibited photosynthesis in the susceptible biotype, whereas 10 M did not affect photosynthesis in the resistant biotype. Regions of the genes encoding ALS and D1 proteins were sequenced to determine the molecular basis for the resistances. Triazine resistance was conferred by a glycine for serine substitution at residue 264 of the D1 protein, while ALS resistance was conferred by a leucine for tryptophan substitution at residue 569 of ALS.


2021 ◽  
Vol 22 (15) ◽  
pp. 7918
Author(s):  
Jisun Hwang ◽  
Bohee Jang ◽  
Ayoung Kim ◽  
Yejin Lee ◽  
Joonha Lee ◽  
...  

Despite the known importance of the transmembrane domain (TMD) of syndecan receptors in cell adhesion and signaling, the molecular basis for syndecan TMD function remains unknown. Using in vivo invertebrate models, we found that mammalian syndecan-2 rescued both the guidance defects in C. elegans hermaphrodite-specific neurons and the impaired development of the midline axons of Drosophila caused by the loss of endogenous syndecan. These compensatory effects, however, were reduced significantly when syndecan-2 dimerization-defective TMD mutants were introduced. To further investigate the role of the TMD, we generated a chimera, 2eTPC, comprising the TMD of syndecan-2 linked to the cytoplasmic domain of platelet-derived growth factor receptor (PDGFR). This chimera exhibited SDS-resistant dimer formation that was lost in the corresponding dimerization-defective syndecan-2 TMD mutant, 2eT(GL)PC. Moreover, 2eTPC specifically enhanced Tyr 579 and Tyr 857 phosphorylation in the PDGFR cytoplasmic domain, while the TMD mutant failed to support such phosphorylation. Finally, 2eTPC, but not 2eT(GL)PC, induced phosphorylation of Src and PI3 kinase (known downstream effectors of Tyr 579 phosphorylation) and promoted Src-mediated migration of NIH3T3 cells. Taken together, these data suggest that the TMD of a syndecan-2 specifically regulates receptor cytoplasmic domain function and subsequent downstream signaling events controlling cell behavior.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber R Paulson ◽  
Maureen O’Callaghan ◽  
Xue-Xian Zhang ◽  
Paul B Rainey ◽  
Mark R H Hurst

Abstract The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana P. Pires ◽  
Rodrigo Monteiro ◽  
Dalila Mil-Homens ◽  
Arsénio Fialho ◽  
Timothy K. Lu ◽  
...  

AbstractIn the era where antibiotic resistance is considered one of the major worldwide concerns, bacteriophages have emerged as a promising therapeutic approach to deal with this problem. Genetically engineered bacteriophages can enable enhanced anti-bacterial functionalities, but require cloning additional genes into the phage genomes, which might be challenging due to the DNA encapsulation capacity of a phage. To tackle this issue, we designed and assembled for the first time synthetic phages with smaller genomes by knocking out up to 48% of the genes encoding hypothetical proteins from the genome of the newly isolated Pseudomonas aeruginosa phage vB_PaeP_PE3. The antibacterial efficacy of the wild-type and the synthetic phages was assessed in vitro as well as in vivo using a Galleria mellonella infection model. Overall, both in vitro and in vivo studies revealed that the knock-outs made in phage genome do not impair the antibacterial properties of the synthetic phages, indicating that this could be a good strategy to clear space from phage genomes in order to enable the introduction of other genes of interest that can potentiate the future treatment of P. aeruginosa infections.


2003 ◽  
Vol 14 (6) ◽  
pp. 2357-2371 ◽  
Author(s):  
Sophie Chantalat ◽  
Rëgis Courbeyrette ◽  
Francesca Senic-Matuglia ◽  
Catherine L. Jackson ◽  
Bruno Goud ◽  
...  

The Sec7 domain guanine nucleotide exchange factors (GEFs) for the GTPase ARF are highly conserved regulators of membrane dynamics and protein trafficking. The interactions of large ARF GEFs with cellular membranes for localization and/or activation are likely to participate in regulated recruitment of ARF and effectors. However, these interactions remain largely unknown. Here we characterize Gmh1p, the first Golgi transmembrane-domain partner of any of the high-molecular-weight ARF-GEFs. Gmh1p is an evolutionarily conserved protein. We demonstrate molecular interaction between the yeast Gmh1p and the large ARF-GEFs Gea1p and Gea2p. This interaction involves a domain of Gea1p and Gea2p that is conserved in the eukaryotic orthologues of the Gea proteins. A single mutation in a conserved amino acid residue of this domain is sufficient to abrogate the interaction, whereas the overexpression of Gmh1p can compensate in vivo defects caused by mutations in this domain. We show that Gmh1p is an integral membrane protein that localizes to the early Golgi in yeast and in human HeLa cells and cycles through the ER. Hence, we propose that Gmh1p acts as a positive Golgi-membrane partner for Gea function. These results are of general interest given the evolutionary conservation of both ARF-GEFs and the Gmh proteins.


2008 ◽  
Vol 7 (8) ◽  
pp. 1415-1426 ◽  
Author(s):  
Alicia Izquierdo ◽  
Celia Casas ◽  
Ulrich Mühlenhoff ◽  
Christopher Horst Lillig ◽  
Enrique Herrero

ABSTRACT Saccharomyces cerevisiae Grx6 and Grx7 are two monothiol glutaredoxins whose active-site sequences (CSYS and CPYS, respectively) are reminiscent of the CPYC active-site sequence of classical dithiol glutaredoxins. Both proteins contain an N-terminal transmembrane domain which is responsible for their association to membranes of the early secretory pathway vesicles, facing the luminal side. Thus, Grx6 localizes at the endoplasmic reticulum and Golgi compartments, while Grx7 is mostly at the Golgi. Expression of GRX6 is modestly upregulated by several stresses (calcium, sodium, and peroxides) in a manner dependent on the Crz1-calcineurin pathway. Some of these stresses also upregulate GRX7 expression under the control of the Msn2/4 transcription factor. The N glycosylation inhibitor tunicamycin induces the expression of both genes along with protein accumulation. Mutants lacking both glutaredoxins display reduced sensitivity to tunicamycin, although the drug is still able to manifest its inhibitory effect on a reporter glycoprotein. Grx6 and Grx7 have measurable oxidoreductase activity in vivo, which is increased in the presence of tunicamycin. Both glutaredoxins could be responsible for the regulation of the sulfhydryl oxidative state at the oxidant conditions of the early secretory pathway vesicles. However, the differences in location and expression responses against stresses suggest that their functions are not totally overlapping.


2001 ◽  
Vol 114 (24) ◽  
pp. 4629-4635
Author(s):  
Michel J. Massaad ◽  
Annette Herscovics

The α1,2-mannosidase Mns1p involved in the N-glycosidic pathway in Saccharomyces cerevisiae is a type II membrane protein of the endoplasmic reticulum. The localization of Mns1p depends on retrieval from the Golgi through a mechanism that involves Rer1p. A chimera consisting of the transmembrane domain of Mns1p fused to the catalytic domain of the Golgi α1,2-mannosyltransferase Kre2p was localized in the endoplasmic reticulum of Δpep4 cells and in the vacuoles of rer1/Δpep4 by indirect immunofluorescence. The split-ubiquitin system was used to determine if there is an interaction between Mns1p and Rer1p in vivo. Co-expression of NubG-Mns1p and Rer1p-Cub-protein A-lexA-VP16 in L40 yeast cells resulted in cleavage of the reporter molecule, protein A-lexA-VP16, detected by western blot analysis and by expression of β-galactosidase activity. Sec12p, another endoplasmic reticulum protein that depends on Rer1p for its localization, also interacted with Rer1p using the split-ubiquitin assay, whereas the endoplasmic reticulum protein Ost1p showed no interaction. A weak interaction was observed between Alg5p and Rer1p. These results demonstrate that the transmembrane domain of Mns1p is sufficient for Rer1p-dependent endoplasmic reticulum localization and that Mns1p and Rer1p interact. Furthermore, the split-ubiquitin system demonstrates that the C-terminal of Rer1p is in the cytosol.


2002 ◽  
Vol 115 (15) ◽  
pp. 3207-3222 ◽  
Author(s):  
Yen-Yi Zhen ◽  
Thorsten Libotte ◽  
Martina Munck ◽  
Angelika A. Noegel ◽  
Elena Korenbaum

NUANCE (NUcleus and ActiN Connecting Element) was identified as a novel protein with an α-actinin-like actin-binding domain. A human 21.8 kb cDNA of NUANCE spreads over 373 kb on chromosome 14q22.1-q22.3. The cDNA sequence predicts a 796 kDa protein with an N-terminal actin-binding domain, a central coiled-coil rod domain and a predicted C-terminal transmembrane domain. High levels of NUANCE mRNA were detected in the kidney, liver,stomach, placenta, spleen, lymphatic nodes and peripheral blood lymphocytes. At the subcellular level NUANCE is present predominantly at the outer nuclear membrane and in the nucleoplasm. Domain analysis shows that the actin-binding domain binds to Factin in vitro and colocalizes with the actin cytoskeleton in vivo as a GFP-fusion protein. The C-terminal transmembrane domain is responsible for the targeting the nuclear envelope. Thus, NUANCE is the firstα-actinin-related protein that has the potential to link the microfilament system with the nucleus.


Sign in / Sign up

Export Citation Format

Share Document