common waterhemp
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 7)

H-INDEX

29
(FIVE YEARS 3)

2020 ◽  
Vol 100 (6) ◽  
pp. 629-641
Author(s):  
Zahoor A. Ganie ◽  
Amit J. Jhala

A soybean trait resistant to sulfonylurea herbicides along with glyphosate (Bolt™ soybean) has been developed. Information is needed to determine herbicide programs for weed control and crop safety in this new multiple herbicide–resistant soybean trait. The objectives of this study were to evaluate weed control and crop safety in sulfonylurea/glyphosate-resistant soybean with herbicide programs, including but not limited to acetolactate synthase (ALS) inhibitors. Field experiments were conducted near Clay Center, NE, USA, in 2016 and 2017. Herbicide programs with multiple sites-of-action including rimsulfuron/thifensulfuron in mixture with flumioxazin, flumioxazin/chlorimuron, pyroxasulfone, chlorimuron/metribuzin, or saflufenacil/imazethapyr plus dimethenamid-P provided 91%–97% control of common waterhemp, velvetleaf, and common lambsquarters. Rimsulfuron and (or) thifensulfuron resulted in 92%–97% control of velvetleaf and common lambsquarters and 81%–87% common waterhemp control at 21 d after pre-emergence (PRE) (DAPRE) herbicide application. Soybean injury was transient and varied from 3% to 11% at 21 DAPRE and 14 d after post-emergence (POST) (DAPOST) herbicide application without causing yield loss. At 30 and 60 DAPOST, 87%–97% velvetleaf control and 92%–98% common lambsquarters control was achieved with herbicide programs tested (PRE, POST, or PRE followed by POST). Common waterhemp control at 30 and 60 DAPOST was not consistent between years. Weed density and biomass reduction were mostly similar to weed control achieved. Untreated control resulted in the lowest soybean yield (1811 kg ha−1) in 2016 compared with 3406–4611 kg ha−1 in herbicide programs.


2020 ◽  
pp. 1-7
Author(s):  
Jacob S. Montgomery ◽  
Darci A. Giacomini ◽  
Patrick J. Tranel

Abstract During the 2017 to 2019 growing seasons, samples of waterhemp and Palmer amaranth that had reportedly survived field-rate applications of protoporphyrinogen oxidase (PPO)–inhibiting herbicides were collected from the American Midwest and tested for target-site mutations known at the time to confer resistance. Target-site resistance was identified in nearly all (135 of 145) tested common waterhemp populations but in only 8 of 13 Palmer amaranth populations. Follow-up research on one population of Palmer amaranth (W-8), which tested negative for all such mutations, confirmed it was resistant to lactofen, with a magnitude of resistance comparable to that conferred by the ΔG210 PPO2 mutation. Gene sequences from both isoforms of PPO (PPO1 and PPO2) were compared between W-8 and known PPO inhibitor–sensitive sequence. A glycine-to-alanine substitution at the 399th amino acid position (G399A) of PPO2, recently identified to reduce target-site herbicide sensitivity, was observed in a subset of resistant W-8 plants. Because no missense mutation completely delimited resistant and sensitive sequences, we initially suspected the presence of a secondary, non-target-site resistance mechanism in this population. To isolate G399A, a segregating F2 population was produced and screened with a delimiting rate of lactofen. χ2 goodness-of-fit analysis of dead/alive ratings indicated single-locus inheritance of resistance in the F2 population, and molecular markers for the W-8 parental PPO2 coding region co-segregated tightly, but not perfectly, with resistance. More research is needed to fully characterize Palmer amaranth PPO inhibitor–resistance mechanisms, which appear to be more diverse than those found in common waterhemp.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chandrima Shyam ◽  
Amit J. Jhala ◽  
Greg Kruger ◽  
Mithila Jugulam

Abstract Common waterhemp emerges throughout the crop growing season in the Midwestern United States, and as a result, the seedlings are exposed to a wide range of temperature regimes. Typically, 2,4-D is used in the Midwest to control winter annual broad-leaf weeds before planting soybean and in an early post-emergence application in corn and sorghum; however, the evolution of 2,4-D-resistant common waterhemp in several Midwestern states may limit the use of 2.4-D for controlling this problem weed. Moreover, temperature is one of the crucial factors affecting weed control efficacy of 2,4-D. This research investigated the effect of temperature on efficacy of 2,4-D to control 2,4-D susceptible (WHS) and -resistant (WHR) common waterhemp. Do se-response of WHS and WHR to 2,4-D was assessed at two temperature regimes, high (HT; 34/20 °C, d/n) and low (LT; 24/10 °C, d/n). Whole plant dose response study indicated an increased level of 2,4-D resistance in WHR at HT compared to LT. Additional investigation of the physiological mechanism of this response indicated that both WHS and WHR common waterhemp plants rapidly metabolized 14C 2,4-D at HT compared to LT. In conclusion, a rapid metabolism of 2,4-D conferred increased level of resistance to 2,4-D in WHR at HT. Therefore, application of 2,4-D when temperatures are cooler can improve control of 2,4-D resistant common waterhemp.


Weed Science ◽  
2019 ◽  
Vol 67 (05) ◽  
pp. 521-526 ◽  
Author(s):  
Kathryn J. Lillie ◽  
Darci A. Giacomini ◽  
Jonathan D. Green ◽  
Patrick J. Tranel

AbstractThe first case of evolved protoporphyrinogen oxidase (PPO)-inhibitor resistance was observed in 2001 in common waterhemp [Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea and Tardif]. This resistance in A. tuberculatus is most commonly conferred by deletion of the amino acid glycine at the 210th position (ΔGly-210) of the PPO enzyme (PPO2) encoded by PPX2. In a field in Kentucky in 2015, inadequate control of Amaranthus plants was observed following application of a PPO inhibitor. Morphological observations indicated that survivors included both A. tuberculatus and Palmer amaranth (Amaranthus palmeri S. Watson). Research was conducted to confirm species identities and resistance and then to determine whether resistance evolved independently in the two species or via hybridization. Results from a quantitative PCR assay based on the ribosomal internal transcribed spacer confirmed that both A. tuberculatus and A. palmeri coexisted in the field. The mutation conferring ΔGly-210 in PPO2 was identified in both species; phylogenetic analysis of a region of PPX2, however, indicated that the mutation evolved independently in the two species. Genotyping of greenhouse-grown plants that survived lactofen indicated that all A. tuberculatus survivors, but only a third of A. palmeri survivors, contained the ΔGly-210 mutation. Consequently, A. palmeri plants were evaluated for the presence of an arginine to glycine or methionine substitution at position 128 of PPO2 (Arg-128-Gly and Arg-128-Met). The Arg-128-Gly substitution was found to account for resistance that was not accounted for by the ΔGly-210 mutation in plants from the A. palmeri population. Results from this study provide a modern-day example of both parallel and convergent evolution occurring within a single field.


Weed Science ◽  
2019 ◽  
Vol 67 (3) ◽  
pp. 296-302 ◽  
Author(s):  
Brent P. Murphy ◽  
Alvaro S. Larran ◽  
Bruce Ackley ◽  
Mark M. Loux ◽  
Patrick J. Tranel

AbstractHerbicide resistance within key driver weeds, such as common waterhemp [Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea and Tardif ], constrains available management options for crop production. Routine surveillance for herbicide resistance provides a mechanism to monitor the development and spread of resistant populations over time. Furthermore, the identification and quantification of resistance mechanisms at the population level can provide information that helps growers develop effective management plans. Populations of Amaranthus spp., including A. tuberculatus, redroot pigweed (Amaranthus retroflexus L.), and Palmer amaranth (Amaranthus palmeri S. Watson), were collected from 51 fields in Ohio during the 2016 growing season. Twenty-four A. tuberculatus populations were screened for resistance to the herbicides lactofen, atrazine, and glyphosate. Phenotypically resistant plants were further investigated to determine the frequency of known resistance mechanisms. Resistance to lactofen was infrequently observed throughout the populations, with 8 of 22 populations exhibiting resistant plants. Within those eight resistant populations, the ΔG210 resistance mechanism was observed in 17 of 30 phenotypically resistant plants, and the remainder lacked all known resistance mechanisms. Resistance to atrazine was observed in 12 of 15 populations; however, a target-site resistance mechanism was not observed in these populations. Resistance to glyphosate was observed in all populations. Gene amplification was the predominant glyphosate-resistance mechanism (147 of 322 plants) in the evaluated populations. The Pro-106-Ser mutation was identified in 24 plants, half of which also possessed gene amplification. In this study, molecular screening generally underestimated the phenotypically observed resistance. Continued mechanism discovery and marker development is required for improved detection of herbicide resistance through molecular assays.


2019 ◽  
Vol 33 (2) ◽  
pp. 236-253 ◽  
Author(s):  
David A. Grantz ◽  
Rama Paudel ◽  
Anil Shrestha

2019 ◽  
Vol 33 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Marshall M. Hay ◽  
Douglas E. Shoup ◽  
Dallas E. Peterson

AbstractDouble-crop soybean after winter wheat is a component of many cropping systems across eastern and central Kansas. Until recently, control of Palmer amaranth and common waterhemp has been both easy and economical with the use of sequential applications of glyphosate in glyphosate-resistant soybean. Many populations of Palmer amaranth and common waterhemp have become resistant to glyphosate. During 2015 and 2016, a total of five field experiments were conducted near Manhattan, Hutchinson, and Ottawa, KS, to assess various non-glyphosate herbicide programs at three different application timings for the control of Palmer amaranth and waterhemp in double-crop soybean after winter wheat. Spring-POST treatments of pyroxasulfone (119 g ai ha–1) and pendimethalin (1065 g ai ha–1) were applied to winter wheat to evaluate residual control of Palmer amaranth and waterhemp. Less than 40% control of Palmer amaranth and waterhemp was observed in both treatments 2 wk after planting (WAP) double-crop soybean. Preharvest treatments of 2,4-D (561 g ae ha–1) and flumioxazin (107 g ai ha–1) were also applied to the winter wheat to assess control of emerged Palmer amaranth and waterhemp. 2,4-D resulted in highly variable Palmer amaranth and waterhemp control, whereas flumioxazin resulted in control similar to PRE treatments that contained paraquat (841 g ai ha–1) plus residual herbicide(s). Excellent control of both species was observed 2 WAP with a PRE paraquat application; however, reduced control of Palmer amaranth and waterhemp was noted 8 WAP due to subsequent emergence. Results indicate that Palmer amaranth and waterhemp control was 85% or greater 8 WAP for PRE treatments that included a combination of paraquat plus residual herbicide(s). PRE treatments that did not include both paraquat and residual herbicide(s) did not provide acceptable control.


2018 ◽  
Vol 10 (10) ◽  
pp. 32
Author(s):  
O. Adewale Osipitan ◽  
Jon E. Scott ◽  
Stevan Z. Knezevic

Tolpyralate, an HPPD (4-hydroxyphenyl-pyruvate dioxygenase) inhibitor, is a relatively new herbicide for weed control in corn. Field studies were conducted in 2015 and 2016 to evaluate the effective dose of tolpyralate applied alone or mixed with atrazine for weed control in corn. The treatments included seven rates (0, 5, 20, 29, 40, 50 and 100 g ai ha-1) of tolpyralate applied alone or mixed with a constant rate (560 g ai ha-1) of atrazine. The evaluated weed species were common waterhemp (Amaranthus rudis Sauer), common lambsquarters (Chenopodium album L.), velvetleaf (Abutilon theophrasti Medik), henbit (Lamium amplexicaule L.) and green foxtail (Setaria viridis L.). Overall, POST-application of tolpyralate resulted in 58-94% visual weed control when applied alone; whereas, addition of atrazine provided 71-100% control of same species. Calculated dose of 19-31 g ai ha-1 (ED90) of tolpyralate applied alone provided 90% visual control of waterhemp, lambsquaters, henbit, and velvetleaf. Whereas, addition of atrazine resulted in significantly lower dose of 11-17 g ai ha-1 for the same level of control, suggesting synergy between the two herbicides.


2018 ◽  
Vol 32 (5) ◽  
pp. 642-655 ◽  
Author(s):  
Debalin Sarangi ◽  
Amit J. Jhala

AbstractStakeholders were surveyed across Nebraska to identify the problem weeds and assess common weed management practices. A total of 425 responses were returned across four Nebraska extension districts (Northeast, Panhandle, Southeast, and West Central). Collectively, 61.2% of total farmed or scouted areas in Nebraska were under no-till production, and corn and soybean were the major crops (82.3% of total farmed or scouted area). Common waterhemp, horseweed, and kochia were the most problematic weeds statewide. Widespread occurrence of glyphosate-resistant (GR) weeds such as common waterhemp, horseweed, kochia, and Palmer amaranth were a serious problem in GR crop production. Additionally, 60% of growers in Nebraska reported the presence of at least one GR weed species on their farms. The most commonly used preplant burndown herbicides were 2,4-D and glyphosate, followed by saflufenacil and dicamba. In Nebraska, 74% and 59% of corn and soybean growers, respectively, were using PRE herbicides; however, more than 80% of growers were using POST herbicides for in-crop weed management. Atrazine alone or in premix or tank mix with mesotrione,S-metolachlor, or acetochlor were the most widely applied PRE herbicides in corn and grain sorghum, whereas the most commonly used PRE herbicides in soybean were the inhibitors of acetolactate synthase (ALS) and protoporphyrinogen oxidase (PPO). Glyphosate was the most frequent choice of the survey respondents as a POST herbicide in GR corn and soybean; 2,4-D was the most commonly used POST herbicide in grain sorghum and wheat. In Nebraska, only 5.2% of total crop area was planted with glufosinate-resistant crops. Most of the respondents (89%) were aware of the new multiple herbicide–resistant crops, and 80% of them listed physical drift and volatility of the auxinic herbicides as their primary concern. Forty-eight percent of survey respondents identified herbicide-resistant weed management as their primary research and extension priority.


Sign in / Sign up

Export Citation Format

Share Document