scholarly journals Characterization of five novel vasopressin V2 receptor mutants causing nephrogenic diabetes insipidus reveals a role of tolvaptan for M272R-V2R mutation

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Federica Prosperi ◽  
Yoko Suzumoto ◽  
Pierluigi Marzuillo ◽  
Vincenzo Costanzo ◽  
Sabina Jelen ◽  
...  

Abstract Nephrogenic diabetes insipidus (NDI) is a rare tubulopathy characterized by urinary concentration defect due to renal resistance to vasopressin. Loss-of-function mutations of vasopressin V2 receptor (V2R) gene (AVPR2) is the most common cause of the disease. We have identified five novel mutations L86P, R113Q, C192S, M272R, and W323_I324insR from NDI-affected patients. Functional characterization of these mutants revealed that R113Q and C192S were normally localized at the basolateral membrane of polarized Madin-Darby Canine Kidney (MDCK) cells and presented proper glycosylation maturation. On the other side, L86P, M272R, and W323_I324insR mutants were retained in endoplasmic reticulum and exhibited immature glycosylation and considerably reduced stability. All five mutants were resistant to administration of vasopressin analogues as evaluated by defective response in cAMP release. In order to rescue the function of the mutated V2R, we tested VX-809, sildenafil citrate, ibuprofen and tolvaptan in MDCK cells. Among these, tolvaptan was effective in rescuing the function of M272R mutation, by both allowing proper glycosylation maturation, membrane sorting and response to dDAVP. These results show an important proof of concept for the use of tolvaptan in patients affected by M272R mutation of V2R causing NDI.

2007 ◽  
Vol 292 (1) ◽  
pp. F253-F260 ◽  
Author(s):  
J. H. Robben ◽  
M. Sze ◽  
N. V. A. M. Knoers ◽  
P. M. T. Deen

Intracellular retention of a functional vasopressin V2 receptor (V2R) is a major cause of congenital nephrogenic diabetes insipidus (NDI) and rescue of V2R mutants by nonpeptide antagonists may restore their basolateral membrane (BM) localization and function. However, the criteria for efficient functional rescue of G protein-coupled receptor (GPCR) mutants at clinically feasible antagonist concentrations are unknown. We found that the four nonpeptide antagonists SR49059, OPC31260 , OPC41061 , and SR121463B induced maturation and rescued the BM expression of eight of nine different V2R mutants, stably expressed in physiologically relevant polarized cells. The extent of maturation and rescued BM expression correlated with the antagonists' concentration and affinity for the V2R. Displacement of the antagonists by AVP and subsequent cAMP generation inversely correlated with the antagonists' affinities for the V2R but is partially influenced by antagonist-specific aspects. Despite limited increases in maturation and cell-surface expression of V2R mutants, the low-affinity SR49059 optimally induced functional rescue at high concentrations, due to its easy displacement by vasopressin. At clinically feasible antagonist concentrations, however, only the high-affinity antagonists OPC31260 and OPC41061 induced functional rescue, as at these concentrations the extent of BM expression became limited. In conclusion, functional rescue of mutant V2Rs at clinically feasible concentrations is most effective with high-affinity antagonists. As OPC31260 and OPC41061 are clinically safe, they are promising candidates to relieve NDI. Moreover, as numerous other diseases are caused by endoplasmic reticulum-retained GPCRs for which cell-permeable antagonists become available, our finding that high-affinity antagonists are superior is anticipated to be important for pharmacotherapy development of these diseases.


2005 ◽  
Vol 289 (2) ◽  
pp. F265-F272 ◽  
Author(s):  
J. H. Robben ◽  
N. V. A. M. Knoers ◽  
P. M. T. Deen

X-linked nephrogenic diabetes insipidus (NDI) is caused by mutations in the gene encoding the vasopressin V2 receptor (V2R). For the development of a tailored therapy for NDI, knowledge of the cellular fate of V2R mutants is needed. It would be useful when this fate could be predicted from the location and type of mutation. To identify similarities and differences in localization, maturation, stability, and degradation of COOH-terminal GFP-tagged V2R mutants, we stably expressed nine mutants in polarized Madin-Darby canine kidney cells. The mutants V2R-L44P, -Δ62–64, -I130F, -S167T, -S167L, and -V206D were mainly expressed in the endoplasmic reticulum (ER) as immature proteins. These mutants had relatively short half-lives due to proteasomal degradation, except for V2R-Δ62–64. In contrast, V2R-R113W, -G201D, and -T204N were expressed in the ER and in the basolateral membrane as immature, high-mannose glycosylated, and mature complex-glycosylated proteins. The immature forms of V2R-R113W and -T204N, but not V2R-G201D, were rapidly degraded. The mature forms varied extensively in their stability and were degraded by only lysosomes (V2R-T204N and wild-type V2R) or lysosomes and proteasomes (V2R-G201D, -R113W). These data reveal that most missense V2R mutations lead to retention in the ER and suggest that mutations that likely distort a transmembrane domain or introduce a charged amino acid close to it make a V2R mutant more prone to ER retention. Because six of the mutants tested showed significant increases in intracellular cAMP levels on transient expression in COS cells, activation of these six receptors following rescue of cell-surface expression might provide a cure for NDI patients.


Nature ◽  
1992 ◽  
Vol 357 (6376) ◽  
pp. 336-339 ◽  
Author(s):  
Stephen J. Lolait ◽  
Anne-Marie O'Carroll ◽  
O. Wesley McBride ◽  
Monica Konig ◽  
Alain Morel ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lixia Wang ◽  
Weihong Guo ◽  
Chunyun Fang ◽  
Wenli Feng ◽  
Yumeng Huang ◽  
...  

AbstractX-linked nephrogenic diabetes insipidus (X-linked NDI) is a rare inherited disease mainly caused by lost-of-function mutations in human AVPR2 gene encoding arginine vasopressin receptor 2 (V2R). Our focus of the current study is on exploration of the functional and biochemical properties of Ile324Met (I324M) mutation identified in a pedigree showing as typical recessive X-linked NDI. We demonstrated that I324M mutation interfered with the conformation of complex glycosylation of V2R. Moreover, almost all of the I324M-V2R failed to express on the cell surface due to being captured by the endoplasmic reticulum control system. We further examined the signaling activity of DDAVP-medicated cAMP and ERK1/2 pathways and the results revealed that the mutant receptor lost the ability in response to DDAVP stimulation contributed to the failure of accumulation of cAMP and phosphorylated ERK1/2. Based on the characteristics of molecular defects of I324M mutant, we selected two reagents (SR49059 and alvespimycin) to determine whether the functions of I324M-V2R can be restored and we found that both compounds can significantly “rescue” I324M mutation. Our findings may provide further insights for understanding the pathogenic mechanism of AVPR2 gene mutations and may offer some implications on development of promising treatments for patients with X-linked NDI.


1996 ◽  
Vol 17 (4) ◽  
pp. 145-146
Author(s):  
Corrine Benchimol

Nephrogenic diabetes insipidus (NDI) is a disorder, either congenital or acquired, in which antidiuretic hormone (ADH) secretion is normal, but the ability to concentrate urine is reduced because of insensitivity of the collecting tubule to ADH. The antidiuretic action of arginine vasopressin requires binding of the hormone to the renal type V2 receptor on the basolateral membrane of the collecting duct principal cell. Binding results in activation of adenylate cyclase, generation of cAMP, and increased reabsorption of water across the apical membrane of the renal collecting duct cell. The defect in NDI may be located at any of the steps from binding of vasopressin to the final effect of the hormone on the luminal membrane.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Li ◽  
Bichao Lu ◽  
Jia Yang ◽  
Chao Li ◽  
Yanchun Li ◽  
...  

The aquaporin 2 (AQP2) plays a critical role in water reabsorption to maintain water homeostasis. AQP2 mutation leads to nephrogenic diabetes insipidus (NDI), characterized by polyuria, polydipsia, and hypernatremia. We previously reported that a novel AQP2 mutation (G215S) caused NDI in a boy. In this study, we aimed to elucidate the cell biological consequences of this mutation on AQP2 function and clarify the molecular pathogenic mechanism for NDI in this patient. First, we analyzed AQP2 expression in Madin-Darby canine kidney (MDCK) cells by AQP2-G215S or AQP2-WT plasmid transfection and found significantly decreased AQP2-G215S expression in cytoplasmic membrane compared with AQP2-WT, independent of forskolin treatment. Further, we found co-localization of endoplasmic reticulum (ER) marker (Calnexin) with AQP2-G215S rather than AQP2-WT in MDCK cells by immunocytochemistry. The functional analysis showed that MDCK cells transfected with AQP2-G215S displayed reduced water permeability compared with AQP2-WT. Visualization of AQP2 structure implied that AQP2-G215S mutation might interrupt the folding of the sixth transmembrane α-helix and/or the packing of α-helices, resulting in the misfolding of monomer and further impaired formation of tetramer. Taken together, these findings suggested that AQP2-G215S was misfolded and retained in the ER and could not be translocated to the apical membrane to function as a water channel, which revealed the molecular pathogenic mechanism of AQP2-G215S mutation and explained for the phenotype of NDI in this patient.


Sign in / Sign up

Export Citation Format

Share Document