vasopressin receptor
Recently Published Documents


TOTAL DOCUMENTS

651
(FIVE YEARS 56)

H-INDEX

56
(FIVE YEARS 4)

2021 ◽  
pp. 2773-2781
Author(s):  
Pitchaya Matchimakul ◽  
Wanpitak Pongkan ◽  
Piyamat Kongtung ◽  
Raktham Mektrirat

Background and Aim: Aquaporin-2 (AQP2) and arginine vasopressin receptor-2 (AVPR2) are proteins that control water homeostasis in principal cells. Chronic kidney disease (CKD) is defined as the impairment and irreversible loss of kidney function and/or structure, which causes water imbalances and polyuria. The study aimed to know the expression of AQPs and AVPR2 in the kidneys of a canine with CKD. Materials and Methods: The kidneys were collected from two dog carcasses from Small Animal Teaching Hospital, Faculty of Veterinary Medicine, Chiang Mai University. The kidney tissue was prepared for immunohistochemistry and investigated the expression and localization of tissue's AQP2 and AVPR2. For statistical analysis, the Mann–Whitney U-test was applied to the data. Results: By immunohistochemistry, AQP2 was expressed strongly in the basolateral and apical membranes of the principal cells, whereas AVPR2 was localized in the principal cell's basolateral membrane in both renal cortex and renal medulla. In the normal kidney, the semi-quantitative immunohistochemistry for the percentage of protein expression of AQP2 and AVPR2 was 5.062±0.4587 and 4.306±0.7695, respectively. In contrast, protein expression of AQP2 and AVPR2 in CKD was found to be 1.218±0.1719 and 0.8536±0.1396, respectively. The data shows that the percentage of AQP2 and AVPR2 expression was decreased, corresponding to a 4-fold and 5-fold in CKD (p<0.001). Conclusion: Our findings revealed that CKD was a marked decrease in AQP2 and AVPR2 expression. The central role of specific AQP2 and AVPR2 in regulating water homeostasis will provide correlations in case of CKD with polyuria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lixia Wang ◽  
Weihong Guo ◽  
Chunyun Fang ◽  
Wenli Feng ◽  
Yumeng Huang ◽  
...  

AbstractX-linked nephrogenic diabetes insipidus (X-linked NDI) is a rare inherited disease mainly caused by lost-of-function mutations in human AVPR2 gene encoding arginine vasopressin receptor 2 (V2R). Our focus of the current study is on exploration of the functional and biochemical properties of Ile324Met (I324M) mutation identified in a pedigree showing as typical recessive X-linked NDI. We demonstrated that I324M mutation interfered with the conformation of complex glycosylation of V2R. Moreover, almost all of the I324M-V2R failed to express on the cell surface due to being captured by the endoplasmic reticulum control system. We further examined the signaling activity of DDAVP-medicated cAMP and ERK1/2 pathways and the results revealed that the mutant receptor lost the ability in response to DDAVP stimulation contributed to the failure of accumulation of cAMP and phosphorylated ERK1/2. Based on the characteristics of molecular defects of I324M mutant, we selected two reagents (SR49059 and alvespimycin) to determine whether the functions of I324M-V2R can be restored and we found that both compounds can significantly “rescue” I324M mutation. Our findings may provide further insights for understanding the pathogenic mechanism of AVPR2 gene mutations and may offer some implications on development of promising treatments for patients with X-linked NDI.


2021 ◽  
Vol 22 (11) ◽  
pp. 5582
Author(s):  
Takuya Adachi ◽  
Yasuto Takeuchi ◽  
Akinobu Takaki ◽  
Atsushi Oyama ◽  
Nozomu Wada ◽  
...  

Tolvaptan is a recently available diuretic that blocks arginine vasopressin receptor 2 in the renal collecting duct. Its diuretic mechanism involves selective water reabsorption by affecting the water reabsorption receptor aquaporin 2. Given that liver cirrhosis patients exhibit hyponatremia due to their pseudo-aldosteronism and usage of natriuretic agents, a sodium maintaining agent, such as tolvaptan, is physiologically preferable. However, large scale studies indicating the patients for whom this would be effective and describing management under its use have been insufficient. The appropriate management of cirrhosis patients treated with tolvaptan should be investigated. In the present review, we collected articles investigating the effectiveness of tolvaptan and factors associated with survival and summarized their management reports. Earlier administration of tolvaptan before increasing the doses of natriuretic agents is recommended because this may preserve effective arterial blood volume.


Author(s):  
Tiffany R. Lago ◽  
Michael J. Brownstein ◽  
Emily Page ◽  
Emily Beydler ◽  
Adrienne Manbeck ◽  
...  

Author(s):  
O. Vollebregt ◽  
E. Koyama ◽  
C.C. Zai ◽  
S.A. Shaikh ◽  
A.J. Lisoway ◽  
...  

Cell Research ◽  
2021 ◽  
Author(s):  
Fulai Zhou ◽  
Chenyu Ye ◽  
Xiaomin Ma ◽  
Wanchao Yin ◽  
Tristan I. Croll ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 301
Author(s):  
Ming-Chun Chen ◽  
Yu-Chao Hsiao ◽  
Chun-Chun Chang ◽  
Sheng-Feng Pan ◽  
Chih-Wen Peng ◽  
...  

Congenital nephrogenic diabetes insipidus (CNDI) is a genetic disorder caused by mutations in arginine vasopressin receptor 2 (AVPR2) or aquaporin 2 genes, rendering collecting duct cells insensitive to the peptide hormone arginine vasopressin stimulation for water reabsorption. This study reports a first identified AVPR2 mutation in Taiwan and demonstrates our effort to understand the pathogenesis caused by applying computational structural analysis tools. The CNDI condition of an 8-month-old male patient was confirmed according to symptoms, family history, and DNA sequence analysis. The patient was identified to have a valine 279 deletion–mutation in the AVPR2 gene. Cellular experiments using mutant protein transfected cells revealed that mutated AVPR2 is expressed successfully in cells and localized on cell surfaces. We further analyzed the pathogenesis of the mutation at sub-molecular levels via long-term molecular dynamics (MD) simulations and structural analysis. The MD simulations showed while the structure of the extracellular ligand-binding domain remains unchanged, the mutation alters the direction of dynamic motion of AVPR2 transmembrane helix 6 toward the center of the G-protein binding site, obstructing the binding of G-protein, thus likely disabling downstream signaling. This study demonstrated that the computational approaches can be powerful tools for obtaining valuable information on the pathogenesis induced by mutations in G-protein-coupled receptors. These methods can also be helpful in providing clues on potential therapeutic strategies for CNDI.


Sign in / Sign up

Export Citation Format

Share Document