scholarly journals Assessment of physical, microstructural, thermal, techno-functional and rheological characteristics of apple (Malus domestica) seeds of Northern Himalayas

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mehnaza Manzoor ◽  
Jagmohan Singh ◽  
Adil Gani

AbstractIn this research, two common apple seed cultivars Viz: ‘Golden Delicious’ (GD) and ‘Red Delicious’ (RD) of Northern Himalayan region were characterized for physical, techno-functional, microstructure, thermal, and rheological properties. Seeds showed a significant difference in width, arithmetic, and geometric mean diameters, volume, and surface area. Proximate analysis results revealed that seed flours have high oil content (> 20%) and are potentially rich sources of protein (> 40%). Color analysis of flours indicated their satisfactory whiter color with higher brightness values (L* ˃ 75), resulting from the reduced particle size which allows greater light penetration and relatively lower a* (< 1.5) and b* (< 11) values. Techno-functional attributes including water/oil absorption capacity, emulsifying capacity, and emulsion stability were significantly higher in RD than GD flour. There was also a significant difference in the average particle size of seed flours. Flour micrographs indicated the presence of oval/spherical-shaped starch granules embedded in dense protein matrix while, Differential Scanning calorimeter (DSC) revealed exothermic transition enthalpies for seed flours. Additionally, seed flours depicted high elastic modulus (G′), suggesting their suitability for modifying food texture. It was concluded that apple seeds exhibit significant potential for use in formulating protein-enriched foods while contributing to reducing industrial wastage.

2020 ◽  
Vol 20 (12) ◽  
pp. 7271-7275
Author(s):  
Yu Fu ◽  
Ludong Tan ◽  
Lingyu Meng ◽  
Xuexue Lei

To establish a simple and safe method for the preparation of paclitaxel PEG-PLGA nanoparticles emulsified in tpgs (PTX-pegpllga-np), for high drug loading; and to study its effect on proliferation and apoptosis of human pancreatic cancer cell line MIAPACA-2. PTX-PEG-PLGA-NP was prepared by one-step precipitation, using tpgs as emulsifier. The drug loading and particle size were used as an index to optimize the formulation, and the physical and chemical properties such as in vitro release and stability were characterized. The uptake of fluorescein coumarin 6 (C6) loaded PEG-PLGA-NP by MIAPACA-2 cells was observed by fluorescence microscope, and the growth and apoptosis of MIAPACA-2 cells after PTX-PEG-PLGA-NP were detected by MTT and flow cytometry respectively. The entrapment efficiency of the nanoparticles was 90.26%, the drug loading was 10.13%, the average particle size was 92.3±3.1 nm, and the zeta potential was 10.48±1.54 mV. The cumulative releases of nano preparation and general preparation (Taxol injection) in four hours were 25.9% and 98.5%, respectively; and the former had a strong sustained-release effect. The results of cell uptake experiments showed that the uptake of c6-PEG-PLGA-NP by MIAPACA-2 cells increased gradually with time. MTT results showed that PTX-PEG-PLGA-NP had no significant difference in the inhibition rate of MIAPACA-2 cells compared with PTX group. Flow cytometry showed that PTX-PEG-PLGAnp was superior better than PTX in inducing apoptosis in MIAPACA-2 cells. The tpgs emulsification method is simple and environment-friendly. The paclitaxel loaded nanoparticles prepared through the optimization of the formulation have large drug loading capacity and uniform particle size, which can target the pancreatic cancer MIAPACA-2 cells, and do not weaken its ability to inhibit the growth of MIAPACA-2 cells. The nanoparticles also induce apoptosis in cancer MIAPACA-2 cells, and could be used for further clinical treatment of pancreatic cancer.


Author(s):  
Carolina Gonzalez Morales ◽  
Miller Alonso Camargo-Valero ◽  
Francisco José Molina Pérez ◽  
Belén Fernández

The formation of struvite (MgNH4PO4·6H2O) for nutrient recovery in wastewater treatment plants has been widely investigated; however, little attention has been paid to the effect of stirring speeds on the resulting particle size, which could affect its agronomic value as a slow-release fertilizer. In this study, struvite formation from the centrate of sewage digestate was performed under six stirring speeds (0, 100, 200, 300, 400, 500 rpm). The resulting struvite crystals were characterised using X-ray diffraction and scanning electron microscopy with energy dispersive X-ray spectroscopy. The average particle size of struvite crystals increased from 55 µm at 0 rpm to 127 µm at 100 rpm and 128 μm at 200 rpm.  Further increments in stirring speeds resulted in smaller crystal sizes. These results indicated that the largest particle size can be obtained at stirring speeds ranging from 100 to 200 rpm, equivalent to a velocity gradient between 79 and 188 s-1, as there was no statistically significant difference between mean values (t-test, p<0.05). The optimum stirring speed range reported herein can be used to set operational conditions for struvite crystallisation with the benefit of producing large crystals and reducing energy consumption in stirring tanks.


2005 ◽  
Vol 475-479 ◽  
pp. 1643-1646
Author(s):  
Qing Zhi Yan ◽  
Li-Ying Zhao ◽  
Xin Tai Su ◽  
Wen Feng Zhang ◽  
Chang Chun Ge

Barium titanate powder has been prepared using sol-gel auto-ignition synthesis process and was compared with two commercial high purity BaTiO3 powders prepared by precipitation from oxalate precursor and by hydrothermal synthesis. Characterization by x-ray fluorescence, XRD, field emission scanning electron microscopy, SEM and BET revealed significant difference, particularly in particle size and agglomerate structure, resulting in different microstructure and dielectric property. The sol-gel auto-ignition synthesis process yielded weakly agglomerated powder with average particle size of 50 nm. This property is favorable for sintering and dielectric property.


1970 ◽  
Vol 26 (1) ◽  
pp. 16 ◽  
Author(s):  
S Balasubramanian ◽  
Rajkumar Rajkumar ◽  
K K Singh

Experiment to identify ambient grinding conditions and energy consumed was conducted for fenugreek. Fenugreek seeds at three moisture content (5.1%, 11.5% and 17.3%, d.b.) were ground using a micro pulverizer hammer mill with different grinding screen openings (0.5, 1.0 and 1.5 mm) and feed rate (8, 16 and 24 kg h-1) at 3000 rpm. Physical properties of fenugreek seeds were also determined. Specific energy consumptions were found to decrease from 204.67 to 23.09 kJ kg-1 for increasing levels of feed rate and grinder screen openings. On the other hand specific energy consumption increased with increasing moisture content. The highest specific energy consumption was recorded for 17.3% moisture content and 8 kg h-1 feed rate with 0.5 mm screen opening. Average particle size decreased from 1.06 to 0.39 mm with increase of moisture content and grinder screen opening. It has been observed that the average particle size was minimum at 0.5 mm screen opening and 8 kg h-1 feed rate at lower moisture content. Bond’s work index and Kick’s constant were found to increase from 8.97 to 950.92 kWh kg-1 and 0.932 to 78.851 kWh kg-1 with the increase of moisture content, feed rate and grinder screen opening, respectively. Size reduction ratio and grinding effectiveness of fenugreek seed were found to decrease from 4.11 to 1.61 and 0.0118 to 0.0018 with the increase of moisture content, feed rate and grinder screen opening, respectively. The loose and compact bulk densities varied from 219.2 to 719.4 kg m-3 and 137.3 to 736.2 kg m-3, respectively.  


2020 ◽  
Vol 27 (22) ◽  
pp. 3623-3656 ◽  
Author(s):  
Bruno Fonseca-Santos ◽  
Patrícia Bento Silva ◽  
Roberta Balansin Rigon ◽  
Mariana Rillo Sato ◽  
Marlus Chorilli

Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohammad Hossain Shariare ◽  
Tonmoy Kumar Mondal ◽  
Hani Alothaid ◽  
Md. Didaruzzaman Sohel ◽  
MD Wadud ◽  
...  

Aim: EPAS (evaporative precipitation into aqueous solution) was used in the current studies to prepare azithromycin nanosuspensions and investigate the physicochemical characteristics for the nanosuspension batches with the aim of enhancing the dissolution rate of the nanopreparation to improve bioavailability. Methods: EPAS method used in this study for preparing azithromycin nanosuspension was achieved through developing an in-house instrumentation method. Particle size distribution was measured using Zetasizer Nano S without sample dilution. Dissolved azithromycin nanosuspensions were also compared with raw azithromycin powder and commercially available products. Total drug content of nanosuspension batches were measured using an Ultra-Performance Liquid Chromatography (UPLC) system with Photodiode Array (PDA) detector while residual solvent was measured using gas chromatography (GC). Results: The average particle size of azithromycin nanosuspension was 447.2 nm and total drug content was measured to be 97.81% upon recovery. Dissolution study data showed significant increase in dissolution rate for nanosuspension batch when compared to raw azithromycin and commercial version (microsuspension). The residual solvent found for azithromycin nanosuspension is 0.000098023 mg/ mL or 98.023 ppb. Conclusion: EPAS was successfully used to prepare azithromycin nanoparticles that exhibited significantly enhanced dissolution rate. Further studies are required to scale up the process and determine long term stability of the nanoparticles.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2003
Author(s):  
Wei Xu ◽  
Jintao Wei ◽  
Zhengxiong Chen ◽  
Feng Wang ◽  
Jian Zhao

The type and fineness of a filler significantly affect the performance of an asphalt mixture. There is a lack of specific research on the effects of filler fineness and dust from aggregates on the properties of epoxy asphalt (EA) mixtures. The effects of aggregate dust and mineral powder on the properties of an EA mixture were evaluated. These filler were tested to determine their fineness, specific surface area and mineral composition. The effects of these fillers on the EA mastic sample and mixture were evaluated. The morphology of the EA mastic samples was analyzed using scanning electron microscopy (SEM). The effects of the fillers on the Marshall stability, tensile strength and fatigue performance of the EA mixture were evaluated. The dust from the aggregates exhibited an even particle size distribution, and its average particle size was approximately 20% of that of the mineral powder. The SEM microanalysis showed that the EA mastic sample containing relatively fine dust formed a tight and dense interfacial bonding structure with the aggregate. The EA mixture sample containing filler composed of dust from aggregate had a significantly higher strength and longer fatigue life than that of the EA sample containing filler composed of mineral powder.


2021 ◽  
Vol 13 (15) ◽  
pp. 8122
Author(s):  
Shijie Tian ◽  
Weiqiang Tan ◽  
Xinyuan Wang ◽  
Tingting Li ◽  
Fanhao Song ◽  
...  

Surface activity of humic acid (HA) and its six sub-fractions isolated from forest soil were characterized by surface tension measurements, dynamic light scattering, and laser doppler electrophoresis. The surface tension of HA and its sub-fractions reduced from 72.4 mN·m−1 to 36.8 mN·m−1 in exponential model with the increasing concentration from 0 to 2000 mg·L−1. The critical micelle concentration (CMC) and Z-average particle size ranged from 216–1024 mg·L−1 and 108.2–186.9 nm for HA and its sub-fractions, respectively. The CMC have related with alkyl C, O-alkyl C, aromatic C, and carbonyl C (p < 0.05), respectively, and could be predicted with the multiple linear regression equation of CMC, CMC = 18896 − 6.9 × C-296 × alkyl C-331 × aromatic C-17019 × H/C + 4054 × HB/HI (p < 0.05). The maximum particle size was 5000 nm after filtered by a membrane with pore size of 450 nm, indicating HA and its sub-fractions could progressed self-assembly at pH 6.86. The aggregate sizes of number-base particle size distributions were mainly in six clusters including 2 ± 1 nm, 5 ± 2 nm, 10 ± 3 nm, 21 ± 8 nm, 40 ± 10 nm, and >50 nm analyzed by Gaussian model that maybe due to the inconsistency of the components and structures of the HA sub-fractions, requiring further study. It is significance to explore the surface activity of HA and its sub-fractions, which is helpful to clarify the environmental behavior of HA.


2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 32
Author(s):  
Waleed H. Hassoon ◽  
Dariusz Dziki ◽  
Antoni Miś ◽  
Beata Biernacka

The objective of this study was to determine the grinding characteristics of wheat with a low moisture content. Two kinds of wheat—soft spelt wheat and hard Khorasan wheat—were dried at 45 °C to reduce the moisture content from 12% to 5% (wet basis). Air drying at 45 °C and storage in a climatic chamber (45 °C, 10% relative humidity) were the methods used for grain dehydration. The grinding process was carried out using a knife mill. After grinding, the particle size distribution, average particle size and grinding energy indices were determined. In addition, the dough mixing properties of wholemeal flour dough were studied using a farinograph. It was observed that decreasing the moisture content in wheat grains from 12% to 5% made the grinding process more effective. As a result, the average particle size of the ground material was decreased. This effect was found in both soft and hard wheat. Importantly, lowering the grain moisture led to about a twofold decrease in the required grinding energy. Moreover, the flour obtained from the dried grains showed higher water absorption and higher dough stability during mixing. However, the method of grain dehydration had little or no effect on the results of the grinding process or dough properties.


Sign in / Sign up

Export Citation Format

Share Document