scholarly journals Non-apoptotic enteroblast-specific role of the initiator caspase Dronc for development and homeostasis of the Drosophila intestine

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jillian L. Lindblad ◽  
Meghana Tare ◽  
Alla Amcheslavsky ◽  
Alicia Shields ◽  
Andreas Bergmann

AbstractThe initiator caspase Dronc is the only CARD-domain containing caspase in Drosophila and is essential for apoptosis. Here, we report that homozygous dronc mutant adult animals are short-lived due to the presence of a poorly developed, defective and leaky intestine. Interestingly, this mutant phenotype can be significantly rescued by enteroblast-specific expression of dronc+ in dronc mutant animals, suggesting that proper Dronc function specifically in enteroblasts, one of four cell types in the intestine, is critical for normal development of the intestine. Furthermore, enteroblast-specific knockdown of dronc in adult intestines triggers hyperplasia and differentiation defects. These enteroblast-specific functions of Dronc do not require the apoptotic pathway and thus occur in a non-apoptotic manner. In summary, we demonstrate that an apoptotic initiator caspase has a very critical non-apoptotic function for normal development and for the control of the cell lineage in the adult midgut and therefore for proper physiology and homeostasis.

2020 ◽  
Author(s):  
Jillian L. Lindblad ◽  
Meghana Tare ◽  
Alla Amcheslavsky ◽  
Alicia Shields ◽  
Andreas Bergmann

SummaryThe initiator caspase Dronc is the only CARD-domain containing caspase in Drosophila and is essential for apoptosis. Here, we report that homozygous dronc mutant adult animals are short-lived due to the presence of a poorly developed, defective and leaky intestine. Interestingly, this mutant phenotype can be significantly rescued by enteroblast-specific expression of dronc+ in dronc mutant animals, suggesting that proper Drone function specifically in enteroblasts, one of four cell types in the intestine, is critical for normal development of the intestine. Furthermore, enteroblast-specific knockdown of dronc in adult intestines triggers hyperplasia and differentiation defects. These enteroblast-specific functions of Drone do not require the apoptotic pathway and thus occur in a non-apoptotic manner. In summary, we demonstrate that an apoptotic initiator caspase has a very critical non-apoptotic function for normal development and for the control of the cell lineage in the adult midgut and therefore for proper physiology and homeostasis.Highlightsdronc mutants die from a fragile and leaky intestinedronc has a critical function in enteroblasts of the intestinedronc controls proliferation and differentiation in the intestinedronc performs these functions in an apoptosis-independent (non-apoptotic) manner


Genetics ◽  
2020 ◽  
Vol 216 (2) ◽  
pp. 409-429
Author(s):  
Matthew B. Lohse ◽  
Lucas R. Brenes ◽  
Naomi Ziv ◽  
Michael B. Winter ◽  
Charles S. Craik ◽  
...  

An unusual feature of the opportunistic pathogen Candida albicans is its ability to switch stochastically between two distinct, heritable cell types called white and opaque. Here, we show that only opaque cells, in response to environmental signals, massively upregulate a specific group of secreted proteases and peptide transporters, allowing exceptionally efficient use of proteins as sources of nitrogen. We identify the specific proteases [members of the secreted aspartyl protease (SAP) family] needed for opaque cells to proliferate under these conditions, and we identify four transcriptional regulators of this specialized proteolysis and uptake program. We also show that, in mixed cultures, opaque cells enable white cells to also proliferate efficiently when proteins are the sole nitrogen source. Based on these observations, we suggest that one role of white-opaque switching is to create mixed populations where the different phenotypes derived from a single genome are shared between two distinct cell types.


2000 ◽  
Vol 278 (5) ◽  
pp. F737-F746 ◽  
Author(s):  
Vanishree Murthy ◽  
Luciana A. Haddad ◽  
Nicole Smith ◽  
Denise Pinney ◽  
Robert Tyszkowski ◽  
...  

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by hamartomas in multiple organs, notably the brain and kidneys. The disease is caused by mutations in TSC1or TSC2 genes, coding hamartin and tuberin, respectively. Immunofluorescence analysis of tuberin and hamartin performed here demonstrates that both proteins are specifically expressed in the distal urinary tubule, comprising the distal tubules, connecting segment, and collecting ducts. Hamartin, distinct from tuberin, is expressed in the thick ascending limbs of Henle and in juxtaglomerular cells, where it colocalizes with renin. In positive epithelial cells, tuberin localizes to the cytoplasm as well as the apical membrane. Hamartin, however, preferentially localizes to the apical membrane. The two proteins colocalize at the apical membrane of type A intercalated cells and connecting tubule cells, whereas in type B intercalated cells they reveal a variable pattern of expression. The cell-specific expression of tuberin and hamartin described here will provide critical insight into the cell types that give rise to kidney lesions, and the tumor suppressor role of these proteins in TSC.


2008 ◽  
Vol 295 (2) ◽  
pp. E227-E237 ◽  
Author(s):  
Veronique Douard ◽  
Ronaldo P. Ferraris

Fructose is now such an important component of human diets that increasing attention is being focused on the fructose transporter GLUT5. In this review, we describe the regulation of GLUT5 not only in the intestine and testis, where it was first discovered, but also in the kidney, skeletal muscle, fat tissue, and brain where increasing numbers of cell types have been found to have GLUT5. GLUT5 expression levels and fructose uptake rates are also significantly affected by diabetes, hypertension, obesity, and inflammation and seem to be induced during carcinogenesis, particularly in the mammary glands. We end by highlighting research areas that should yield information needed to better understand the role of GLUT5 during normal development, metabolic disturbances, and cancer.


2019 ◽  
Author(s):  
Hadi Najafi ◽  
Kyle Wong ◽  
Woo Jae Kim

ABSTRACTDrosophila melanogaster is a proper model organism for studying the development and function of the nervous system. The Drosophila nervous system consists of distinct cell types with significant homologies to various cell types of more advanced organisms, including human. Among all cell types of the nervous system, astrocyte-like glia (ALG) have conserved functions to mammals and are essential for normal physiology and behaviours of the fly.In this study, we exploited the gene expression profile of single cells in Drosophila optic lobe to identify the genes with specific expression pattern in each cell type. Through a bioinformatical analysis of the data, a novel ALG-specific gene (here assigned as deathstar) was identified. Immunostaining of deathstar in the central nervous system (CNS) showed its presence in specific regions of Drosophila ventral nerve cord, which previously has been characterized as ALG cells. Consistent with the bioinformatical analysis, deathstar-related signals were overlapped with the signals of the previously-reported ALG marker, Eaat1, supporting its specific expression in ALG cells.At the physiological level, RNAi-mediated suppression of deathstar gene impeded the normal development of male flies without any effects on females. Cell type-specific expression of deathstar RNAi showed that deathstar gene affects locomotion behaviour and lifespan of D. melanogaster, in an ALG-specific manner.Taken together, we showed that bioinformatical analysis of a previously reported expression data of Drosophila optic lobe successfully predicted the ALG-specific expression pattern of deathstar gene. Moreover, it was consistent with the ALG-specific effects of this gene on locomotion and lifespan of D. melanogaster, in vivo.


2002 ◽  
Vol 50 (12) ◽  
pp. 1567-1578 ◽  
Author(s):  
Jie Pan ◽  
Herman Yeger ◽  
Ernest Cutz

The FORSE-1 ( forebrain-surface-embryonic) monoclonal antibody (MAb) recognizes a carbohydrate cell surface epitope related to the Lewis-X (LeX) and stage-specific embryonic antigens (SSEAs). In the developing CNS, the FORSE-1 epitope is believed to serve as a marker of progenitor cells. We studied the expression of the FORSE-1 epitope in pulmonary neuroendocrine cells (PNECs) and related neuroepithelial bodies (NEBs), cell types implicated in paracrine regulation of lung development. We used dual immunolabeling to identify PNECs/NEBs in tissue sections from developing rabbit fetal lungs and corresponding primary lung cell cultures. During the early stage (E16), the FORSE-1 MAb labeled primitive airway epithelium, whereas serotonin (5HT) immunoreactivity, a marker of PNEC/NEB differentiation, was negative. After E18, FORSE-1 labeling became restricted to PNECs and NEBs, identified by co-expression with 5HT, then decreased coincident with an increase in 5HT. Expression of the FORSE-1 epitope correlated inversely with 5HT expression in PNEC/NEB cells. FORSE-1 immunoreactivity correlated with cell proliferation assessed by BrdU labeling. Downregulation of the FORSE-1 epitope correlated with maturation of PNECs/NEBs. The presence of few FORSE-1/5HT-positive cells in postnatal lung suggests retention of progenitors. The FORSE-1 epitope was associated with a high molecular weight (286 kD) glycoprotein that decreased with increasing gestational age, as demonstrated by immunoblotting. Overall expression of SSEA-1, −3, and −4 antigens was similar to FORSE-1/5HT, although the former was preferentially localized to neurite-like processes. Because the role of the FORSE-1 epitope in the CNS probably involves cell adhesion and differentiation, we propose a similar function in developing lung. The demonstration of LeX/SSEA antigen expression in the PNEC/NEB cell lineage underscores the importance of these cells in developing lung. Furthermore, the FORSE-1 antigen may identify committed progenitors of the PNEC/NEB cell system.


2021 ◽  
Vol 22 (4) ◽  
pp. 1850
Author(s):  
Wing Yip Tam ◽  
Xia Wang ◽  
Andy S. K. Cheng ◽  
Kwok-Kuen Cheung

The cerebellum, the region of the brain primarily responsible for motor coordination and balance, also contributes to non-motor functions, such as cognition, speech, and language comprehension. Maldevelopment and dysfunction of the cerebellum lead to cerebellar ataxia and may even be associated with autism, depression, and cognitive deficits. Hence, normal development of the cerebellum and its neuronal circuitry is critical for the cerebellum to function properly. Although nine major types of cerebellar neurons have been identified in the cerebellar cortex to date, the exact functions of each type are not fully understood due to a lack of cell-specific markers in neurons that renders cell-specific labeling and functional study by genetic manipulation unfeasible. The availability of cell-specific markers is thus vital for understanding the role of each neuronal type in the cerebellum and for elucidating the interactions between cell types within both the developing and mature cerebellum. This review discusses various technical approaches and recent progress in the search for cell-specific markers for cerebellar neurons.


2010 ◽  
Vol 24 (9) ◽  
pp. 1737-1747 ◽  
Author(s):  
GuangFeng Zhang ◽  
Naveena Yanamala ◽  
Kira L. Lathrop ◽  
Lin Zhang ◽  
Judith Klein-Seetharaman ◽  
...  

Abstract Recent studies have demonstrated the presence of estrogen receptor (ER)β in the mitochondria in various cell types and tissues, but the exact function of this localization remains unclear. In this study, we have examined the function of mitochondrial ERβ in non-small-cell lung cancer (NSCLC) cells. Down-regulation of ERβ by short hairpin RNA constructs sensitized NSCLC cells to various apoptosis-inducing agents such as cisplatin, taxol, and etoposide. The increased growth inhibition and induction of apoptosis in ERβ-knockdown cells was observed irrespective of estrogen treatment, suggesting a ligand-independent role of ERβ in regulating the intrinsic apoptotic pathway. Further, ERβ from the mitochondrial fraction physically interacted with the proapoptotic protein Bad, in a ligand-independent manner. Glutathione-S-transferase pull-down assays and molecular modeling studies revealed that the DNA-binding domain and hinge region of ERβ, and the BH3 domain of Bad were involved in these interactions. Further investigations revealed that ERβ inhibited Bad function by disrupting Bad-Bcl-XL and Bad-Bcl-2 interactions. Reintroduction of ERβ in the mitochondria of ERβ knockdown cells reversed their sensitivity to cisplatin. Overall, our results demonstrate a ligand-independent role of ERβ in regulating apoptosis, revealing a novel function for ERβ in the mitochondria.


Author(s):  
Katharina Neubauer ◽  
Barbara Zieger

Septins are conserved cytoskeletal GTP-binding proteins identified in almost all eukaryotes except higher plants. Mammalian septins comprise 13 family members with either ubiquitous or organ- and tissue-specific expression patterns. They form filamentous oligomers and complexes with other proteins to serve as diffusions barrier and/or multi-molecular scaffolds to function in a physiologically regulated manner. Diverse septins are highly expressed in endothelial cells and platelets, which play an important role in hemostasis, a process to prevent blood loss after vascular injury. Endothelial septins are involved in cellular processes such as exocytosis and in processes concerning organismal level, like angiogenesis. Septins are additionally found in endothelial cell-cell junctions where their presence is required to maintain the integrity of the barrier function of vascular endothelial monolayers. In platelets, septins are important for activation, degranulation, adhesion, and aggregation. They have been identified as mediators of distinct platelet functions and being essential in primary and secondary hemostatic processes. Septin-knockout mouse studies show the relevance of septins in several aspects of hemostasis. This is in line with reports that dysregulation of septins is clinically relevant in human bleeding disorders. The precise function of septins in the biology of endothelial cells and platelets remains poorly understood. The following mini-review highlights the current knowledge about the role of septin cytoskeleton in regulating critical functions in these two cell types.


Development ◽  
2001 ◽  
Vol 128 (6) ◽  
pp. 859-869 ◽  
Author(s):  
K.A. Mintzer ◽  
M.A. Lee ◽  
G. Runke ◽  
J. Trout ◽  
M. Whitman ◽  
...  

TGFbeta signaling pathways of the bone morphogenetic protein (BMP) subclass are essential for dorsoventral pattern formation of both vertebrate and invertebrate embryos. Here we determine by chromosomal mapping, linkage analysis, cDNA sequencing and mRNA rescue that the dorsalized zebrafish mutant lost-a-fin (laf) is defective in the gene activin receptor-like kinase 8 (alk8), which encodes a novel type I TGFbeta receptor. The alk8 mRNA is expressed both maternally and zygotically. Embyros that lack zygotic, but retain maternal Laf/Alk8 activity, display a weak dorsalization restricted to the tail and die by 3 days postfertilization. We rescued the laf dorsalized mutant phenotype by alk8 mRNA injection and generated homozygous laf/alk8 mothers to investigate the maternal role of Laf/Alk8 activity. Adult fish lacking Laf/Alk8 activity are fertile, exhibit a growth defect and are significantly smaller than their siblings. Embryos derived from homozygous females, which lack both maternal and zygotic Laf/Alk8 activity, display a strongly dorsalized mutant phenotype, no longer limited to the tail. These mutant embryos lack almost all gastrula ventral cell fates, with a concomitant expansion of dorsal cell types. During later stages, most of the somitic mesoderm and neural tissue circumscribe the dorsoventral axis of the embryo. Zygotic laf/alk8 mutants can be rescued by overexpression of the BMP signal transducer Smad5, but not the Bmp2b or Bmp7 ligands, consistent with the Laf/Alk8 receptor acting within a BMP signaling pathway, downstream of a Bmp2b/Bmp7 signal. Antibodies specific for the phosphorylated, activated form of Smad1/5, show that BMP signaling is nearly absent in gastrula lacking both maternal and zygotic Laf/Alk8 activity, providing further evidence that Laf/Alk8 transduces a BMP signal. In total, our work strongly supports the role of Laf/Alk8 as a type I BMP receptor required for the specification of ventral cell fates.


Sign in / Sign up

Export Citation Format

Share Document