neuronal type
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 13)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Estelle Moubarak ◽  
Yanis Inglebert ◽  
Fabien Tell ◽  
Jean-Marc Goaillard

ABSTRACTAction potential (AP) shape is a critical electrophysiological parameter, in particular because it strongly modulates neurotransmitter release. AP shape is also used to distinguish neuronal populations, as it greatly varies between neuronal types. For instance, AP duration ranges from hundreds of microseconds in cerebellar granule cells to 2-3 milliseconds in substantia nigra pars compacta (SNc) dopaminergic (DA) neurons. While most of this variation seems to arise from differences in the subtypes of voltage- and calcium-gated ion channels expressed, a few studies suggested that dendritic morphology may also affect AP shape. However, AP duration also displays significant variability in a same neuronal type, while the determinants of these variations are poorly known. Using electrophysiological recordings, morphological reconstructions and realistic Hodgkin-Huxley modeling, we investigated the relationships between dendritic morphology and AP shape in SNc DA neurons. In this neuronal type where the axon arises from an axon-bearing dendrite (ABD), the duration of the somatic AP could be predicted from a linear combination of the complexities of the ABD and the non-ABDs. Dendrotomy simulation and experiments showed that these correlations arise from the causal influence of dendritic topology on AP duration, due in particular to a high density of sodium channels in the somato-dendritic compartment. In addition, dendritic morphology also modulated AP back-propagation efficiency in response to barrages of EPSCs in the ABD. In line with previous findings, these results demonstrate that dendritic morphology plays a major role in defining the electrophysiological properties of SNc DA neurons and their cell-to-cell variations.SIGNIFICANCE STATEMENTAction potential (AP) shape is a critical electrophysiological parameter, in particular because it strongly modulates neurotransmitter release. AP shape (e.g. duration) greatly varies between neuronal types but also within a same neuronal type. While differences in ion channel expression seem to explain most of AP shape variation across cell types, the determinants of cell-to-cell variations in a same neuronal type are mostly unknown. We used electrophysiological recordings, neuronal reconstruction and modeling to show that, due to the presence of sodium channels in the somato-dendritic compartment, a large part of cell-to-cell variations in somatic AP duration in substantia nigra pars compacta dopaminergic neurons is explained by variations in dendritic topology.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009051
Author(s):  
Mario Rubio-Teves ◽  
Sergio Díez-Hermano ◽  
César Porrero ◽  
Abel Sánchez-Jiménez ◽  
Lucía Prensa ◽  
...  

Projection neurons are the commonest neuronal type in the mammalian forebrain and their individual characterization is a crucial step to understand how neural circuitry operates. These cells have an axon whose arborizations extend over long distances, branching in complex patterns and/or in multiple brain regions. Axon length is a principal estimate of the functional impact of the neuron, as it directly correlates with the number of synapses formed by the axon in its target regions; however, its measurement by direct 3D axonal tracing is a slow and labor-intensive method. On the contrary, axon length estimations have been recently proposed as an effective and accessible alternative, allowing a fast approach to the functional significance of the single neuron. Here, we analyze the accuracy and efficiency of the most used length estimation tools—design-based stereology by virtual planes or spheres, and mathematical correction of the 2D projected-axon length—in contrast with direct measurement, to quantify individual axon length. To this end, we computationally simulated each tool, applied them over a dataset of 951 3D-reconstructed axons (from NeuroMorpho.org), and compared the generated length values with their 3D reconstruction counterparts. The evaluated reliability of each axon length estimation method was then balanced with the required human effort, experience and know-how, and economic affordability. Subsequently, computational results were contrasted with measurements performed on actual brain tissue sections. We show that the plane-based stereological method balances acceptable errors (~5%) with robustness to biases, whereas the projection-based method, despite its accuracy, is prone to inherent biases when implemented in the laboratory. This work, therefore, aims to provide a constructive benchmark to help guide the selection of the most efficient method for measuring specific axonal morphologies according to the particular circumstances of the conducted research.


2021 ◽  
Author(s):  
Mario Rubio-Teves ◽  
Sergio Díez-Hermano ◽  
César Porrero ◽  
Abel Sánchez-Jiménez ◽  
Lucía Prensa ◽  
...  

Projection neurons are the commonest neuronal type in the mammalian forebrain and their individual characterization is a crucial step to understand how neural circuitry operates. These cells have an axon whose arborizations extend over long distances, branching in complex patterns and/or in multiple brain regions. Axon length is a principal estimate of the functional impact of the neuron, as it directly correlates with the number of synapses formed by the axon in its target regions; however, its measurement by direct 3D axonal tracing is a slow and labor-intensive method. On the contrary, axon length estimations have been recently proposed as an effective and accessible alternative, allowing a fast approach to the functional significance of the single neuron. Here, we analyze the accuracy and efficiency of the most used length estimation tools - design-based stereology by virtual planes or spheres, and mathematical correction of the 2D projected-axon length - in contrast with direct measurement, to quantify individual axon length. To this end, we computationally simulated each tool, applied them over a dataset of 951 3D-reconstructed axons (from NeuroMorpho.org), and compared the generated length values with their 3D reconstruction counterparts. Additionally, the computational results were compared with estimated and direct measurements of individual axon lengths performed on actual brain tissue sections, to analyze the practical difficulties and biases arising in real cases. The evaluated reliability of each axon length estimation method is then balanced with the required human effort, experience and know-how, and economic affordability. This work, therefore, aims to provide a constructive benchmark to help guide the selection of the most efficient method for measuring specific axonal morphologies according to the particular circumstances of the conducted research.


2021 ◽  
Vol 22 (4) ◽  
pp. 1850
Author(s):  
Wing Yip Tam ◽  
Xia Wang ◽  
Andy S. K. Cheng ◽  
Kwok-Kuen Cheung

The cerebellum, the region of the brain primarily responsible for motor coordination and balance, also contributes to non-motor functions, such as cognition, speech, and language comprehension. Maldevelopment and dysfunction of the cerebellum lead to cerebellar ataxia and may even be associated with autism, depression, and cognitive deficits. Hence, normal development of the cerebellum and its neuronal circuitry is critical for the cerebellum to function properly. Although nine major types of cerebellar neurons have been identified in the cerebellar cortex to date, the exact functions of each type are not fully understood due to a lack of cell-specific markers in neurons that renders cell-specific labeling and functional study by genetic manipulation unfeasible. The availability of cell-specific markers is thus vital for understanding the role of each neuronal type in the cerebellum and for elucidating the interactions between cell types within both the developing and mature cerebellum. This review discusses various technical approaches and recent progress in the search for cell-specific markers for cerebellar neurons.


2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Landi Sun ◽  
Lihong Cui ◽  
Zhen Liu ◽  
Qixuan Wang ◽  
Zhaoyu Xue ◽  
...  

Mechanoreceptor cells develop a specialized cytoskeleton that plays structural and sensory roles at the site of mechanotransduction. However, little is known about how the cytoskeleton is organized and formed. Using electron tomography and live-cell imaging, we resolve the 3D structure and dynamics of the microtubule-based cytoskeleton in fly campaniform mechanosensory cilia. Investigating the formation of the cytoskeleton, we find that katanin p60-like 1 (kat-60L1), a neuronal type of microtubule-severing enzyme, serves two functions. First, it amplifies the mass of microtubules to form the dense microtubule arrays inside the sensory cilia. Second, it generates short microtubules that are required to build the nanoscopic cytoskeleton at the mechanotransduction site. Additional analyses further reveal the functional roles of Patronin and other potential factors in the local regulatory network. In all, our results characterize the specialized cytoskeleton in fly external mechanosensory cilia at near-molecular resolution and provide mechanistic insights into how it is formed.


2020 ◽  
Author(s):  
Tomke Stürner ◽  
André Ferreira Castro ◽  
Maren Philipps ◽  
Hermann Cuntz ◽  
Gaia Tavosanis

SummaryDendrites display a striking variety of neuronal type-specific morphologies, but the mechanisms and principles underlying such diversity remain elusive. A major player in defining the morphology of dendrites is the neuronal cytoskeleton, including evolutionarily conserved actin-modulatory proteins (AMPs). Still, we lack a clear understanding of how AMPs might support developmental phenomena such as neuron-type specific dendrite dynamics. To address precisely this level of in vivo specificity, we concentrated on a defined neuronal type, the class III dendritic arborisation (c3da) neuron of Drosophila larvae, displaying actin-enriched short terminal branchlets (STBs). Computational modelling reveals that the main branches of c3da neurons follow a general growth model based on optimal wiring, but the STBs do not. Instead, model STBs are defined by a short reach and a high affinity to grow towards the main branches. We thus concentrated on c3da STBs and developed new methods to quantitatively describe dendrite morphology and dynamics based on in vivo time-lapse imaging of mutants lacking individual AMPs. In this way, we extrapolated the role of these AMPs in defining STB properties. We propose that dendrite diversity is supported by the combination of a common step, refined by a neuron type-specific second level. For c3da neurons, we present a molecular model of how the combined action of multiple AMPs in vivo define the properties of these second level specialisations, the STBs.In briefA quantitative morphological dissection of the concerted actin-modulatory protein actions provides a model of dendrite branchlet outgrowth.HighlightsActin organisation in small terminal branchlets of Drosophila class III dendritic arborisation neuronsSix actin-modulatory proteins individually control the characteristic morphology and dynamics of branchletsQuantitative tools for dendrite morphology and branch dynamics enable a comparative analysisA two-step computational growth model reproduces c3da dendrite morphology


2020 ◽  
Vol 42 (5) ◽  
pp. 4-10
Author(s):  
Dhanach Dhirachaikulpanich ◽  
Robert A.I. Paraoan ◽  
Emil Carlsson ◽  
Luminita Paraoan

The retina is a complex biological structure located at the back of the eye. Every day, it continually performs an intricate set of tasks to provide us with the sense of vision. The neuroretina encompasses neuronal type of cells including the light-sensitive photoreceptors, which sense the incoming light and trigger the conversion of the visual stimulus information to a neural response relayed to our brain where images are created. This article focuses on the physiological processes occurring in the retina and the exquisite interplay between photoreceptors and the adjacent cell monolayer called the retinal pigment epithelium, which underpins the key visual processes of phototransduction, visual cycle and phagocytosis of spent photoreceptors’ outer segments. We also present examples of functional defects in the retina and how they lead to impaired vision or blindness, and discuss some emerging treatment options for retinal diseases.


2020 ◽  
Vol 9 (11) ◽  
Author(s):  
Mark A. Munger ◽  
Yusuf Olğar ◽  
Megan L. Koleske ◽  
Heather L. Struckman ◽  
Jessica Mandrioli ◽  
...  

Background Atrial fibrillation (AF) is a comorbidity associated with heart failure and catecholaminergic polymorphic ventricular tachycardia. Despite the Ca 2+ ‐dependent nature of both of these pathologies, AF often responds to Na + channel blockers. We investigated how targeting interdependent Na + /Ca 2+ dysregulation might prevent focal activity and control AF. Methods and Results We studied AF in 2 models of Ca 2+ ‐dependent disorders, a murine model of catecholaminergic polymorphic ventricular tachycardia and a canine model of chronic tachypacing‐induced heart failure. Imaging studies revealed close association of neuronal‐type Na + channels (nNa v ) with ryanodine receptors and Na + /Ca 2+ exchanger. Catecholamine stimulation induced cellular and in vivo atrial arrhythmias in wild‐type mice only during pharmacological augmentation of nNa v activity. In contrast, catecholamine stimulation alone was sufficient to elicit atrial arrhythmias in catecholaminergic polymorphic ventricular tachycardia mice and failing canine atria. Importantly, these were abolished by acute nNa v inhibition (tetrodotoxin or riluzole) implicating Na + /Ca 2+ dysregulation in AF. These findings were then tested in 2 nonrandomized retrospective cohorts: an amyotrophic lateral sclerosis clinic and an academic medical center. Riluzole‐treated patients adjusted for baseline characteristics evidenced significantly lower incidence of arrhythmias including new‐onset AF, supporting the preclinical results. Conclusions These data suggest that nNa V s mediate Na + ‐Ca 2+ crosstalk within nanodomains containing Ca 2+ release machinery and, thereby, contribute to AF triggers. Disruption of this mechanism by nNa v inhibition can effectively prevent AF arising from diverse causes.


2019 ◽  
Vol 6 (9) ◽  
pp. 221-223 ◽  
Author(s):  
Hale Önder Yılmaz

Objective: Early infantile epileptic encephalopathy type11 (EIEE) generally known as an autosomal dominant inherited disease caused by the voltage-gated sodium channel neuronal type 2 alpha subunit (Navα1.2) encoded by the SCN2A gene mutations. The clinic of the disease is variable. Herein we report the second case with a homozygous missense mutation of the SCN2A gene (c.1588 G>T). Material and methods: NGS gene panel including the SCN2A gene from genomic DNA extracted from peripheral blood using a commercially available kit and quantified using standard methods. Illumina miseq analysis platform was used for this purpose, we performed analysis of coding regions and exon-intron boundaries and the data was analyzed by IGV. Results: The results confirmed by sanger sequencing show us an SCN2A (NM_001040142) c.1588 G>T homozygote mutation. Conclusion: This shows us more clinical and molecular studies need for SCN2A associated disease pathogenesis


Sign in / Sign up

Export Citation Format

Share Document