scholarly journals Robotic agricultural instrument for automated extraction of nematode cysts and eggs from soil to improve integrated pest management

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christopher M. Legner ◽  
Gregory L. Tylka ◽  
Santosh Pandey

AbstractSoybeans are an important crop for global food security. Every year, soybean yields are reduced by numerous soybean diseases, particularly the soybean cyst nematode (SCN). It is difficult to visually identify the presence of SCN in the field, let alone its population densities or numbers, as there are no obvious aboveground disease symptoms. The only definitive way to assess SCN population densities is to directly extract the SCN cysts from soil and then extract the eggs from cysts and count them. Extraction is typically conducted in commercial soil analysis laboratories and university plant diagnostic clinics and involves repeated steps of sieving, washing, collecting, grinding, and cleaning. Here we present a robotic instrument to reproduce and automate the functions of the conventional methods to extract nematode cysts from soil and subsequently extract eggs from the recovered nematode cysts. We incorporated mechanisms to actuate the stage system, manipulate positions of individual sieves using the gripper, recover cysts and cyst-sized objects from soil suspended in water, and grind the cysts to release their eggs. All system functions are controlled and operated by a touchscreen interface software. The performance of the robotic instrument is evaluated using soil samples infested with SCN from two farms at different locations and results were comparable to the conventional technique. Our new technology brings the benefits of automation to SCN soil diagnostics, a step towards long-term integrated pest management of this serious soybean pest.

Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 74
Author(s):  
Xiao-wei Li ◽  
Xin-xin Lu ◽  
Zhi-jun Zhang ◽  
Jun Huang ◽  
Jin-ming Zhang ◽  
...  

Intercropping of aromatic plants provides an environmentally benign route to reducing pest damage in agroecosystems. However, the effect of intercropping on natural enemies, another element which may be vital to the success of an integrated pest management approach, varies in different intercropping systems. Rosemary, Rosmarinus officinalis L. (Lamiaceae), has been reported to be repellent to many insect species. In this study, the impact of sweet pepper/rosemary intercropping on pest population suppression was evaluated under greenhouse conditions and the effect of rosemary intercropping on natural enemy population dynamics was investigated. The results showed that intercropping rosemary with sweet pepper significantly reduced the population densities of three major pest species on sweet pepper, Frankliniella intonsa, Myzus persicae, and Bemisia tabaci, but did not affect the population densities of their natural enemies, the predatory bug, Orius sauteri, or parasitoid, Encarsia formosa. Significant pest population suppression with no adverse effect on released natural enemy populations in the sweet pepper/rosemary intercropping system suggests this could be an approach for integrated pest management of greenhouse-cultivated sweet pepper. Our results highlight the potential of the integration of alternative pest control strategies to optimize sustainable pest control.


2017 ◽  
Vol 9 ◽  
pp. 117954331770927 ◽  
Author(s):  
Anuar Morales-Rodriguez ◽  
Aracely Ospina ◽  
Kevin W Wanner

The basic principles of a reliable integrated pest management program include pest identification, monitoring, and distribution. Selecting the appropriate sampling protocol to monitor wireworm for research or applied entomology depends on the objective, including simply detecting the presence or absence of wireworm, surveying the composition of wireworm assemblages, or estimating spatial and temporal population densities. In this study, the efficacy of pitfall, stocking, pot, and canister traps baited with wheat and barley mixtures was evaluated for monitoring wireworm populations in four commercial cereal fields in Montana. Pitfall and stocking traps collected greater numbers of wireworm (1625 and 1575, respectively) followed by pot-type and canister-type traps (1173 and 725, respectively). The 5098 wireworm collected from four sites included seven species: Aeolus mellillus, Agriotes sp, Dalopius sp, Hypnoidus bicolor, Limonius californicus, Limonius infuscatus, and S. aeripennis.


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 278 ◽  
Author(s):  
Beatrice W. Muriithi ◽  
Nancy G. Gathogo ◽  
Gracious M. Diiro ◽  
Samira A. Mohamed ◽  
Sunday Ekesi

To sustain agricultural development in Africa, innovative strategies for addressing a myriad of biotic and abiotic constraints facing the agricultural systems must be established. One current biotic stress is the mango infesting fruit flies. In the effort to contain the widely spreading and damaging invasive species of tephritid fruit fly (Bactrocera dorsalis) (Hendel), an area-wide integrated pest management (IPM) program is being promoted in the horticultural sub-sector in sub-Saharan Africa. Such a new technology in which farmers have limited information before commercialization may have diffusion paths that are different from the often-assumed sigmoid (or “s”) shaped curve. We apply the descriptive and econometric analysis of ex ante and ex post integrated fruit fly management used by mango farmers in Kenya and Ethiopia. The results reveal that this technology has a relatively high adoption rate and high prospects for adoption growth in Kenya compared to Ethiopia in the near future.


Biologia ◽  
2012 ◽  
Vol 67 (3) ◽  
Author(s):  
Ján Praslička ◽  
Janka Schlarmannová ◽  
Barbora Matejovičová ◽  
Ján Tancík

AbstractDuring an experiment carried out in 2009–2010 we observed different population densities of Typhlodromus pyri in three monitored pear cultivars in Organic Pest Management (OPM) as well as Integrated Pest Management (IPM) orchards. In both years the population density of T. pyri was the highest in the cultivar Conference (organic orchard). The lowest population density was found in 2009 on the cultivar Dicolor (IPM orchard) and in 2010 on the cultivar Bohemica. Factors involved are discussed.


Author(s):  
J. R. Adams ◽  
G. J Tompkins ◽  
A. M. Heimpel ◽  
E. Dougherty

As part of a continual search for potential pathogens of insects for use in biological control or on an integrated pest management program, two bacilliform virus-like particles (VLP) of similar morphology have been found in the Mexican bean beetle Epilachna varivestis Mulsant and the house cricket, Acheta domesticus (L. ).Tissues of diseased larvae and adults of E. varivestis and all developmental stages of A. domesticus were fixed according to procedures previously described. While the bean beetles displayed no external symptoms, the diseased crickets displayed a twitching and shaking of the metathoracic legs and a lowered rate of activity.Examinations of larvae and adult Mexican bean beetles collected in the field in 1976 and 1977 in Maryland and field collected specimens brought into the lab in the fall and reared through several generations revealed that specimens from each collection contained vesicles in the cytoplasm of the midgut filled with hundreds of these VLP's which were enveloped and measured approximately 16-25 nm x 55-110 nm, the shorter VLP's generally having the greater width (Fig. 1).


2019 ◽  
Vol 30 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Elizabeth H. Beers ◽  
Adrian Marshall ◽  
Jim Hepler ◽  
Josh Milnes

Sign in / Sign up

Export Citation Format

Share Document