scholarly journals High turbidity levels alter coral reef fish movement in a foraging task

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cait Newport ◽  
Oliver Padget ◽  
Theresa Burt de Perera

AbstractSensory systems allow animals to detect and respond to stimuli in their environment and underlie all behaviour. However, human induced pollution is increasingly interfering with the functioning of these systems. Increased suspended sediment, or turbidity, in aquatic habitats reduces the reactive distance to visual signals and may therefore alter movement behaviour. Using a foraging task in which fish (Rhinecanthus aculeatus) had to find six food sites in an aquarium, we tested the impact of high turbidity (40–68 NTU; 154 mg/L) on foraging efficiency using a detailed and novel analysis of individual movements. High turbidity led to a significant decrease in task efficacy as fish took longer to begin searching and find food, and they travelled further whilst searching. Trajectory analyses revealed that routes were less efficient and that fish in high turbidity conditions were more likely to cover the same ground and search at a slower speed. These results were observed despite the experimental protocol allowing for the use of alternate sensory systems (e.g. olfaction, lateral line). Given that movement underlies fundamental behaviours including foraging, mating, and predator avoidance, a reduction in movement efficiency is likely to have a significant impact on the health and population dynamics of visually-guided fish species.

Author(s):  
Kai Krabben ◽  
David Mann ◽  
Arnt van Helden ◽  
Youri Kalisvaart ◽  
Daniel Fortin-Guichard ◽  
...  

2010 ◽  
Vol 22 (5) ◽  
pp. 888-902 ◽  
Author(s):  
Marco Tamietto ◽  
Franco Cauda ◽  
Luca Latini Corazzini ◽  
Silvia Savazzi ◽  
Carlo A. Marzi ◽  
...  

Following destruction or deafferentation of primary visual cortex (area V1, striate cortex), clinical blindness ensues, but residual visual functions may, nevertheless, persist without perceptual consciousness (a condition termed blindsight). The study of patients with such lesions thus offers a unique opportunity to investigate what visual capacities are mediated by the extrastriate pathways that bypass V1. Here we provide evidence for a crucial role of the collicular–extrastriate pathway in nonconscious visuomotor integration by showing that, in the absence of V1, the superior colliculus (SC) is essential to translate visual signals that cannot be consciously perceived into motor outputs. We found that a gray stimulus presented in the blind field of a patient with unilateral V1 loss, although not consciously seen, can influence his behavioral and pupillary responses to consciously perceived stimuli in the intact field (implicit bilateral summation). Notably, this effect was accompanied by selective activations in the SC and in occipito-temporal extrastriate areas. However, when instead of gray stimuli we presented purple stimuli, which predominantly draw on S-cones and are thus invisible to the SC, any evidence of implicit visuomotor integration disappeared and activations in the SC dropped significantly. The present findings show that the SC acts as an interface between sensory and motor processing in the human brain, thereby providing a contribution to visually guided behavior that may remain functionally and anatomically segregated from the geniculo-striate pathway and entirely outside conscious visual experience.


Author(s):  
Said H. Audi ◽  
Swetha Ganesh ◽  
Pardis Taheri ◽  
Xiao Zhang ◽  
Ranjan K. Dash ◽  
...  

Dissipation of mitochondrial membrane potential (Δψm) is a hallmark of mitochondrial dysfunction. our objective was to use a previously developed experimental-computational approach to estimate tissue Δψm in intact lungs of rats exposed to hyperoxia, and to evaluate the ability of duroquinone (DQ) to reverse any hyperoxia-induced depolarization of lung Δψm. Rats were exposed to hyperoxia (>95% O2) or normoxia (room air) for 48 hrs, after which lungs were excised and connected to a ventilation-perfusion system. The experimental protocol consisted of measuring the concentration of the fluorescent dye rhodamine 6G (R6G) during three single-pass phases: loading, washing, and uncoupling, in which the lungs were perfused with and without R6G, and with the mitochondrial uncoupler FCCP, respectively. For normoxic lungs, the protocol was repeated with 1) rotenone (complex I inhibitor), 2) rotenone and either DQ or its vehicle (DMSO), and 3) rotenone, glutathione (GSH), and either DQ or DMSO added to the perfusate. Hyperoxic lungs were studied with and without DQ and GSH added to the perfusate. Computational modeling was used to estimate lung Δψm from R6G data. Rat exposure to hyperoxia resulted in partial depolarization (-33 mV) of lung Δψm, and complex I inhibition depolarized lung Δψm by -83 mV. Results also demonstrate the efficacy of DQ to fully reverse both rotenone-induced and hyperoxia-induced lung Δψm depolarization. This study demonstrates hyperoxia-induced Δψm depolarization in intact lungs, and the utility of this approach for assessing the impact of potential therapies such as exogenous quinones that target mitochondria in intact lungs.


Author(s):  
Tatyana O. Sharpee

Sensory systems exist to provide an organism with information about the state of the environment that can be used to guide future actions and decisions. Remarkably, two conceptually simple yet general theorems from information theory can be used to evaluate the performance of any sensory system. One theorem states that there is a minimal amount of energy that an organism has to spend in order to capture a given amount of information about the environment. The second theorem states that the maximum rate with which the organism can acquire resources from the environment, relative to its competitors, is limited by the information this organism collects about the environment, also relative to its competitors. These two theorems provide a scaffold for formulating and testing general principles of sensory coding but leave unanswered many important practical questions of implementation in neural circuits. These implementation questions have guided thinking in entire subfields of sensory neuroscience, and include: What features in the sensory environment should be measured? Given that we make decisions on a variety of time scales, how should one solve trade-offs between making simpler measurements to guide minimal decisions vs. more elaborate sensory systems that have to overcome multiple delays between sensation and action. Once we agree on the types of features that are important to represent, how should they be represented? How should resources be allocated between different stages of processing, and where is the impact of noise most damaging? Finally, one should consider trade-offs between implementing a fixed strategy vs. an adaptive scheme that readjusts resources based on current needs. Where adaptation is considered, under what conditions does it become optimal to switch strategies? Research over the past 60 years has provided answers to almost all of these questions but primarily in early sensory systems. Joining these answers into a comprehensive framework is a challenge that will help us understand who we are and how we can make better use of limited natural resources.


2020 ◽  
Vol 12 (3) ◽  
pp. 553
Author(s):  
Richard W. Gould ◽  
Stephanie Anderson ◽  
M. David Lewis ◽  
W. David Miller ◽  
Igor Shulman ◽  
...  

Optically-active constituents vary over short time and space scales in coastal waters, and they are impacted by a variety of complex, inter-related forcing processes. As part of the Integrated Coastal Bio-Optical Dynamics (ICoBOD) project, we conducted a field campaign in Mississippi Sound in the northern Gulf of Mexico during spring 2018 to examine the impact of the passage of atmospheric and tidal fronts on fine-scale physical and bio-optical property distributions in a shallow, dynamic, coastal environment. During a 25-day experiment, we deployed eight moorings over a roughly 7 × 7 km box encompassing a frontal zone, to collect a time series of physical and bio-optical measurements. We describe changes in diver visibility related to the passage of a short-duration, high-turbidity surface plume and nepheloid layer development/decay during a tidal cycle. Maximum nepheloid layer development was observed during low tide and lasted about 9–12 h. The strongest turbidity signal extended about 4–5 m above the bottom (approximately half of the water column), although anomalously elevated values were observed all the way to the surface. In addition, high-resolution (50 m) hydrodynamic model simulations provide insight into the frontal dynamics and aid interpretation of the observed patterns. Mooring observations confirmed model-predicted heat flux changes associated with the passage of an atmospheric cold front.


2020 ◽  
Vol 32 (2) ◽  
pp. 315-325
Author(s):  
Flor Kusnir ◽  
Slav Pesin ◽  
Gal Moscona ◽  
Ayelet N. Landau

In a dynamically changing environment, the ability to capture regularities in our sensory input helps us generate predictions about future events. In most sensory systems, the basic finding is clear: Knowing when something will happen improves performance on it [Nobre, A. C., & van Ede, F. (2017). Anticipated moments: Temporal structure in attention. Nature Reviews Neuroscience, 19, 34–48, 2017]. We here examined the impact of temporal predictions on a less-explored modality: touch. Participants were instructed to detect a brief target embedded in an ongoing vibrotactile stimulus. Unbeknownst to them, the experiment had two timing conditions: In one part, the time of target onset was fixed and thus temporally predictable, whereas in the other, it could appear at a random time within the ongoing stimulation. We found a clear modulation of detection thresholds due to temporal predictability: Contrary to other sensory systems, detecting a predictable tactile target was worse relative to unpredictable targets. We discuss our findings within the framework of tactile suppression.


2001 ◽  
Vol 43 (5) ◽  
pp. 119-128 ◽  
Author(s):  
J. P. Bardin ◽  
A. Gautier ◽  
S. Barraud ◽  
B. Chocat

In the south-east of France, the evacuation of stormwater by infiltration into the ground is being developed for large aquifer systems such as the ground water in the Rhône valley and in the eastern part of Lyons. A study proposal has been presented to the water management department of the conurbation of Lyons, aimed at quantifying, within a reasonably short space of time, the effects, in terms of transport of pollutants, of the stormwater infiltration system in the underground water in eastern Lyons. To this end, a one year duration experiment was carried out on the Vénissieux infiltration basin which drains stormwater from a 380 hectares industrial catchment area. Its peculiar configuration also made it possible to acquire new knowledge on the qualitative operation of a few pretreatment facilities. After describing the operation of the basin and the experimental protocol, we shall present a body of data that we monitored and our conclusions about the behaviour of the pollution throughout the facilities. Then, we present methods used to assess the pollution removal performance of the infiltration basin and its pretreatment devices, the results obtained, and our conclusions about the impact of the infiltration basin on groundwater and soil.


2014 ◽  
Vol 10 (4) ◽  
pp. 20140254 ◽  
Author(s):  
Michael J. Sheehan ◽  
Judy Jinn ◽  
Elizabeth A. Tibbetts

To be effective, signals must propagate through the environment and be detected by receivers. As a result, signal form evolves in response to both the constraints imposed by the transmission environment and receiver perceptual abilities. Little work has examined the extent to which signals may act as selective forces on receiver sensory systems to improve the efficacy of communication. If receivers benefit from accurate signal assessment, selection could favour sensory organs that improve discrimination of established signals. Here, we provide evidence that visual resolution coevolves with visual signals in Polistes wasps. Multiple Polistes species have variable facial patterns that function as social signals, whereas other species lack visual signals. Analysis of 19 Polistes species shows that maximum eye facet size is positively associated with both eye size and presence of visual signals. Relatively larger facets within the eye's acute zone improve resolution of small images, such as wasp facial signals. Therefore, sensory systems may evolve to optimize signal assessment. Sensory adaptations to facilitate signal detection may represent an overlooked area of the evolution of animal communication.


2017 ◽  
Author(s):  
Kiyohito Iigaya ◽  
Madalena S. Fonseca ◽  
Masayoshi Murakami ◽  
Zachary F. Mainen ◽  
Peter Dayan

AbstractSerotonin plays an influential, but computationally obscure, modulatory role in many aspects of normal and dysfunctional learning and cognition. Here, we studied the impact of optogenetic stimulation of dorsal raphe serotonin neurons in mice performing a non-stationary, reward-driven, foraging task. We report that activation of serotonin neurons significantly boosted learning rates for choices following long inter-trial-intervals that were driven by the recent history of reinforcement.


Author(s):  
Yasir M. Bashawri ◽  
Peter Robins ◽  
David M. Cooper ◽  
James E. McDonald ◽  
Davey L. Jones ◽  
...  

The environmental cycling of antibiotic-resistant blaCTX-M-15-producing E. coli following release from wastewater treatment plants is a major public health concern. This study aimed to (i) assess the impact of sediment concentrations on the rate of their inactivation following release from human wastewater into freshwater, and (ii) simulate their subsequent dispersal to the nearby coastline during a “worst-case” event where heavy rainfall coincided with high spring tide in the Conwy Estuary, North Wales. Freshwater microcosms of low, medium and high turbidity were inoculated with blaCTX-M-15-producing E. coli, then exposed to ultraviolet (UV) radiation. Typical regional wintertime exposure to UV was found to be insufficient to eradicate E. coli, and in highly turbid water, many bacteria survived simulated typical regional summertime UV exposure. Modelling results revealed that blaCTX-M-15-producing E. coli concentrations reduced downstream from the discharge source, with ~30% of the source concentration capable of dispersing through the estuary to the coast, taking ~36 h. Offshore, the concentration simulated at key shellfisheries and bathing water sites ranged from 1.4% to 10% of the upstream input, depending on the distance offshore and tidal regime, persisting in the water column for over a week. Our work indicates that the survival of such organisms post-release into freshwater is extended under typical wintertime conditions, which could ultimately have implications for human health.


Sign in / Sign up

Export Citation Format

Share Document