scholarly journals Flat hardness distribution in AA6061 joints by linear friction welding

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeong-Won Choi ◽  
Weihao Li ◽  
Kohsaku Ushioda ◽  
Hidetoshi Fujii

AbstractIt is known that one of the main concerns associated with the conventional welding of precipitation-strengthened Al alloys is the formation of softening regions, resulting in the deterioration of mechanical properties. In this study, we show that linear friction welding (LFW) can completely suppress softening regions in precipitation-strengthened AA6061-T6 alloy by introducing a large shear strain and by controlling the interfacial temperature. We found that the LFW process resulted in an extremely low interfacial temperature; it decreased as the applied pressure increased from 50 to 240 MPa. This approach can essentially suppress both softening and hardening regions, leading to uniform hardness distribution in Al joints. The high-pressure LFW process demonstrated here can thus provide an innovated guidance to obtain high-performance Al alloy joints and be extended to other precipitation-strengthened Al alloys, which undergo high-temperature softening.

2011 ◽  
Vol 314-316 ◽  
pp. 979-983
Author(s):  
Tie Jun Ma ◽  
Xi Chen ◽  
Wen Ya Li

The orthogonal experimental design was conducted for linear friction welding of Ti-6Al-4V titanium alloy (TC4). The friction power and joint temperature were collected during the welding process. The influence of process parameters on the axial shortening was analyzed. The suitable process parameters were determined by investigating the joint appearance, the requirement of axial shortening and welding variables during welding. The results provide important reference for establishing process parameters of linear friction welding in practice.


2016 ◽  
Vol 879 ◽  
pp. 2072-2077 ◽  
Author(s):  
Priti Wanjara ◽  
Javad Gholipour ◽  
Kosuke Watanabe ◽  
Koji Nezaki ◽  
Y. Tian ◽  
...  

Linear friction welding (LFW), an emerging automated technology, has potential for solid-state joining of dissimilar materials (bi-metals) to enable tailoring of the mechanical performance, whilst limiting the assembly weight for increased fuel efficiency. However, bi-metallic welds are quite difficult to manufacture, especially when the material combinations can lead to the formation of intermetallic (brittle) phases at the interface, such as the case with assembly of Ti base alloys with Ni base superalloys. The intermetallic phase, once formed, lowers the performance of the as-manufactured properties and its growth during elevated temperature service can lead to unreliable performance. In this project, it was demonstrated that linear friction welding can be applied to join Ti-6%Al-4%V (workhorse Ti alloy) to INCONEL® 718 (workhorse Ni-base superalloy) with minimized interaction at the interface. Of particular merit is that no intermediate layer (between the Ti alloy and Ni-base superalloy) was needed for bonding. Characterization of the bi-metallic weld included macro-and microstructural examination of the flash and interface regions and evaluation of the hardness.


2012 ◽  
Vol 60 (2) ◽  
pp. 770-780 ◽  
Author(s):  
E. Dalgaard ◽  
P. Wanjara ◽  
J. Gholipour ◽  
X. Cao ◽  
J.J. Jonas

Sign in / Sign up

Export Citation Format

Share Document