suitable process
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 28)

H-INDEX

9
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Tommi Rinne ◽  
Anna Klemettinen ◽  
Lassi Klemettinen ◽  
Ronja Ruismäki ◽  
Hugh O’Brien ◽  
...  

In this study, industrial lithium-ion battery (LIB) waste was treated by a froth flotation process, which allowed selective separation of electrode particles from metallic-rich fractions containing Cu and Al. In the flotation experiments, recovery rates of ~80 and 98.8% for the cathode active elements (Co, Ni, Mn) and graphite were achieved, respectively. The recovered metals from the flotation fraction were subsequently used in high-temperature Cu-slag reduction. In this manner, the possibility of using metallothermic reduction for Cu-slag reduction using Al-wires from LIB waste as the main reductant was studied. The behavior of valuable (Cu, Ni, Co, Li) and hazardous metals (Zn, As, Sb, Pb), as a function of time as well as the influence of Cu-slag-to-spent battery (SB) ratio, were investigated. The results showcase a suitable process to recover copper from spent batteries and industrial Cu-slag. Cu-concentration decreased to approximately 0.3 wt.% after 60 min reduction time in all samples where Cu/Al-rich LIB waste fraction was added. It was also showed that aluminothermic reduction is effective for removing hazardous metals from the slag. The proposed process is also capable of recovering Cu, Co, and Ni from both Cu-slag and LIB waste, resulting in a secondary Cu slag that can be used in various applications.


2021 ◽  
Vol 7 (9) ◽  
pp. 766
Author(s):  
Gheorghe-Adrian Martău ◽  
Peter Unger ◽  
Roland Schneider ◽  
Joachim Venus ◽  
Dan Cristian Vodnar ◽  
...  

Solid state fermentation (SsF) is recognized as a suitable process for the production of enzymes using organic residues as substrates. However, only a few studies have integrated an evaluation of the feasibility of applying enzymes produced by SsF into subsequent hydrolyses followed by the production of target compounds, e.g., lactic acid (LA), through submerged-liquid fermentations (SmF). In this study, wheat bran (WB) was used as the substrate for the production of enzymes via SsF by Aspergillus awamori DSM No. 63272. Following optimization, cellulase and glucoamylase activities were 73.63 ± 5.47 FPU/gds and 107.10 ± 2.63 U/gdb after 7 days and 5 days of fermentation, respectively. Enzymes were then used for the hydrolysis of the organic fraction of municipal solid waste (OFMSW). During hydrolysis, glucose increased considerably with a final value of 19.77 ± 1.56 g/L. Subsequently, hydrolysates were fermented in SmF by Bacillus coagulans A166 increasing the LA concentration by 15.59 g/L. The data reported in this study provides an example of how SsF and SmF technologies can be combined for the valorization of WB and OFMSW.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4722
Author(s):  
Manuela Panić ◽  
Veronika Gunjević ◽  
Kristina Radošević ◽  
Marina Cvjetko Cvjetko Bubalo ◽  
Karin Kovačević Kovačević Ganić ◽  
...  

The aim of this work is to develop an industrially suitable process for the sustainable waste disposal in wine production. The proposed process involves the development of an environmentally friendly method for the isolation of biologically active compounds from Graševina grape pomace according to the green extraction principles, in order to obtain a ready-to-use extract. In this process, deep eutectic solvents (DES) were used as extraction solvents. Aiming to save time in selecting the optimal DES that would provide the most efficient Graševina pomace polyphenols extraction, the user-friendly software COSMOtherm was used and 45 DES were screened. Moreover, the prepared extracts were chemically and biologically characterized to confirm their safety for human application. Computational and experimental results proved the applicability of COSMOtherm in the selection of the optimal DES for the environmentally friendly preparation of the ready-to-use extract from Graševina grape pomace with expected application in the cosmetic industry.


2021 ◽  
pp. 0734242X2110291
Author(s):  
Benjamin Piribauer ◽  
Andreas Bartl ◽  
Wolfgang Ipsmiller

Recently, textiles and their end-of-life management have become the focus of public and political attention. In the European Union the revised waste framework directive defines textiles as municipal waste and stipulates their separate collection by 2025. In the context of these developments, this paper summarises briefly the current state-of-the-art in textile recycling. It is evident that recycling methods are not yet fully developed. This is especially the case with multi-material textiles, which are composed of two or more polymers that are incompatible for recycling. In the practical part of the communication, results are presented which show that enzymatic hydrolysis is a suitable process for recycling textiles made of cotton and polyester. After a complete removal of cotton, the remaining pure polyester fibres undergo a re-granulation and post-condensation step. The so obtained recycled polyester is fed back into the textile processing chain and finally towels are obtained. The main steering parameters of the enzymatic hydrolysis process are described. The study proves that solutions in accordance with the Circular Economy in the textile sector are available but an industrial implementation has not yet been realised.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1539
Author(s):  
Antonio Faba ◽  
Simone Quondam Antonio

Grain oriented steels are widely used for electrical machines and components, such as transformers and reactors, due to their high magnetic permeability and low power losses. These outstanding properties are due to the crystalline structure known as Goss texture, obtained by a suitable process that is well-known and in widespread use among industrial producers of ferromagnetic steel sheets. One of the most interesting research areas in this field has been the development of non-destructive methods for the quality assessment of Goss texture. In particular, the study of techniques that can be implemented in industrial processes is very interesting. Here, we provide an overview of techniques developed in the past, novel approaches recently introduced, and new perspectives. The reliability and accuracy of several methods and equipment are presented and discussed.


2021 ◽  
Vol 11 (13) ◽  
pp. 6105
Author(s):  
Daniel Travieso Pedroso ◽  
Einara Blanco Machin ◽  
Gustavo Cabrera-Barjas ◽  
Mauricio Flores ◽  
Héctor Grandón Urra ◽  
...  

Sugarcane bagasse has a great potential to be used as biofuel; however, its use as feedstock in fluidized bed reactors is hampered due to its fibrous nature, low apparent density, high moisture content, and difficulties with its fluidization. The present study evaluated the torrefaction of sugarcane bagasse to propose suitable process conditions that balance the properties of the fuel obtained in the torrefaction and the process’s energy requirements. Based on the thermogravimetric analysis and previous reports, two final process temperatures (230 °C and 280 °C) and residence times (35 and 45 min) for the same heating rate (5 °C/min) and nitrogen flow (1 L/min) were evaluated. Within the experimental conditions evaluated, it can be concluded that for 30 min of residence time, the average target temperature of 230 °C should be high enough to produce a stable torrefacted bagasse with a 3.41% reduction in the volatile content and obtain 98.85% of energy yield. Higher temperatures increase the feedstock’s carbon content and energy density, but the reduction in energy yield and the fraction of volatiles do not justify higher temperatures or longer residence times for pretreating the sugarcane bagasse.


2021 ◽  
Author(s):  
Marcos Borrego ◽  
Domingo Morales-Palma ◽  
José Andrés Lopez-Fernandez ◽  
Andrés J. Martinez-Donaire ◽  
Gabriel Centeno ◽  
...  

Recently, hole-flanging by single-stage incremental forming (SPIF) has been proposed as a suitable process to perform hole flanges for small- and medium-sized batches with high flexibility in shape. However, this incremental forming has many differences compared with the conventional press working operation in terms of strain and thickness distributions, failure mechanisms and flangeability measures. In fact, regarding the evaluation of the formability of the flanges, the classical Forming Limit Ratio (LFR) should be used with care to quantify this property in hole-flanging by SPIF. Additionally, the FLC (Forming Limit Curve for necking) and FFL (Fracture Forming Limit) curves, powerful tools for analysing sheet failure in practice, may also yield erroneous prediction of necking in conventional press working or fracture in SPIF. The aim of this work is to present a comparison and analysis of the formability of hole flanges performed by SPIF and press working in AA7075-O sheets. Two complementary parameters to the LFR to compare the flangebility in both operations are discussed, along with the influence of bending induced by the forming tool and the stress triaxiality in the evolution of the principal strains during the forming process. The results point out the limitations in the current practice.


2021 ◽  
Author(s):  
Maria Rosaria Saffioti ◽  
Michela Sanguedolce ◽  
Giovanna Rotella ◽  
Luigino Filice

Burnishing is a Severe Plastic Deformation process having the potential to replace expensive finishing post processes. It is considered a super finishing process due to its results in terms of drastic roughness reduction. Also, additional advantages include the surface integrity improvement functionalized to the specific application. Even though burnishing is widely applied for surface improvement of conventional materials, knowledge about its effect on additively manufactured metals is still limited. This paper aims to fill this gap presenting experiments on roller burnishing on additively manufactured stainless steel in order to improve its tribological performance. The experimental campaign was carried out to find suitable process parameters able to drastically improve the tribological behavior of the final product. In particular, the influence of the burnishing forces on the whole surface quality has been addressed. The overall results demonstrate that the selected burnishing configuration is able to successfully modify the surface characteristics of the steel, making it appropriate for critical applications. Furthermore, the experimental findings allow to conclude that burnishing process can replace a series of post processes needed after additive manufacturing, drastically reducing the time and costs associated to the manufacturing process and meeting Industry 4.0 requirements.


Author(s):  
Ayush Dogra ◽  
Chirag Kamal Ahuja ◽  
Sanjeev Kumar

Background: Obtaining the medical history from a patient is a tedious task for doctors as it depends on a lot of factors which are difficult to keep track from a patient’s perspective. Doctors have to rely upon the technological tools to make a swift and accurate judgment about the patient’s health. Introduction: Out of many such tools, there are two special imaging modalities known as X-ray - Computed Tomography (CT) and Magnetic Resonance imaging (MRI) which are of a significant importance in the medical world assisting the diagnosis process. Method: The advancement in signal processing theory and analysis has led to design and implementation of large number of image processing and fusion algorithms. Each of these methods have evolved in terms in their terms of their computational efficiency and visual results over the years. Result: Various researches have revealed their properties in terms of their efficiency and outreach and it has been concluded that image fusion can be very suitable process that can help to compensate the drawbacks. Conclusion: In this manuscript, recent state-of-the-art techniques have been used to fuse these image modalities and established its need and importance in a more intuitive way with the help of a wide range of assessment parameters.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 404 ◽  
Author(s):  
Aarón García-Blázquez ◽  
Natalia Moratalla-López ◽  
Cándida Lorenzo ◽  
M. Rosario Salinas ◽  
Gonzalo L. Alonso

The dehydration process is the basis to obtain high quality saffron and to preserve it for a long time. This process modifies saffron’s main metabolites that define its quality, and are responsible for the characteristic color, taste, and aroma of the spice. In this work, the effect of microwave dehydration on saffron main metabolites (picrocrocin, safranal and crocetin esters) from Crocus sativus L. stigmas at three determinate powers and different time lapses was evaluated. The results showed that this dehydration process obtained similar or lower crocetin esters content, and after three months of storage, higher concentration was shown in treatments at 440 W for 36 s, 55 s, and 73 s; at 616 W for 90 s; and at 800 W for 20 s. Picrocrocin content was lower and safranal content was higher in all treatments compared to the control both before and after storage. Regarding to commercial quality, microwave dehydration obtained Category I of saffron according to International Standard Organization (ISO) 3632. After three months of storage, treatments at 616 W for 83 s and 800 W for 60 s obtained lower categories. The results obtained suggest that microwave dehydration is a suitable process for obtaining high quality saffron, 800 W with 6 lapses of 20 s being the best conditions studied.


Sign in / Sign up

Export Citation Format

Share Document