scholarly journals Activated hepatic stellate cells promote epithelial-to-mesenchymal transition in hepatocellular carcinoma through transglutaminase 2-induced pseudohypoxia

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Hui Ma ◽  
Liqi Xie ◽  
Lan Zhang ◽  
Xin Yin ◽  
Hucong Jiang ◽  
...  
Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1459-1471
Author(s):  
Gengming Niu ◽  
Xiaotian Zhang ◽  
Runqi Hong ◽  
Ximin Yang ◽  
Jiawei Gu ◽  
...  

Abstract Introduction Gap junction protein, alpha 1 (GJA1), which is correlated with recurrences and unfavorable prognoses in hepatocellular carcinomas (HCCs), is one of the specific proteins expressed by activated hepatic stellate cells (HSCs). Methods Expression of GJA1 was compared between HCCs and nontumor tissues (NTs), between hepatic cirrhosis and NTs, and between primary and metastatic HCCs using transcriptomic datasets from the Gene Expression Omnibus and the Integrative Molecular Database of Hepatocellular Carcinoma. The in vitro activities of GJA1 were investigated in cultured HSCs and HCC cells. The underlying mechanism was characterized using Gene Set Enrichment Analysis and validated by western blotting. Results The expression of GJA1 was significantly increased in HCCs and hepatic cirrhosis compared to that in NTs. GJA1 was also overexpressed in pulmonary metastases from HCCs when compared with HCCs without metastasis. Overexpression of GJA1 promoted while knockdown of GJA1 inhibited proliferation and transforming growth factor (TGF)-β-mediated activation and migration of cultured HSCs. Overexpression of GJA1 by lentivirus infection promoted proliferation and migration, while conditioned medium from HSCs overexpressing GJA1 promoted migration but inhibited proliferation of Hep3B and PLC-PRF-5 cells. Lentivirus infection with shGJA1 or conditioned medium from shGJA1-infected HSCs inhibited the proliferation and migration of HCCLM3 cells that had a high propensity toward lung metastasis. Mechanistically, GJA1 induced the epithelial–mesenchymal transition (EMT) in HSCs and HCCLM3 cells. Conclusion GJA1 promoted HCC progression by inducing HSC activation and the EMT in HSCs. GJA1 is potentially regulated by TGF-β and thus may be a therapeutic target to inhibit HCC progression.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qin Pan ◽  
Yu-Qin Wang ◽  
Guang-Ming Li ◽  
Xiao-Yan Duan ◽  
Jian-Gao Fan

Activation of hepatic stellate cells (HSCs) depending on epithelial-to-mesenchymal transition (EMT) reflects the key event of liver fibrosis. Contrastively, mesenchymal-to-epithelial transition (MET) of HSCs facilitates the fibrosis resolution. Here we investigated the effect of Fuzheng Huayu (FZHY) recipe, a Chinese herbal decoction made ofRadix Salviae Miltiorrhizae,Semen Persicae,Cordyceps sinensis,Pollen Pini, andGynostemma pentaphyllum, on liver fibrosis concerning the balance of EMT and MET in HSCs. In contrast to the increased TGF-β1/BMP-7 ratio in activated HSCs, FZHY administration induced significant upregulation of BMP-7 and downregulation of TGF-β1at both transcription and translation levels. Restoration of TGF-β1/BMP-7 ratio inhibited the expression of p38 MAPK and phosphorylated p38 MAPK, resulting in the reversal of epithelial-to-mesenchymal transition (EMT) to mesenchymal-to-epithelial transition (MET) as characterized by the abolishment of EMT markers (α-SMA and desmin) and reoccurrence of MET marker (E-cadherin).In vivotreatment of FZHY recipe also demonstrated the statistical reduction of activated HSCs with EMT phenotype, which attenuated the carbon tetrachloride- (CCl4-) induced liver fibrosis in a dose-dependent manner. These findings may highlight a novel antifibrotic role of FZHY recipe on the basis of rebalancing EMT and MET in HSCs.


2013 ◽  
Vol 305 (12) ◽  
pp. G881-G890 ◽  
Author(s):  
Guanhua Xie ◽  
Anna Mae Diehl

The outcome of liver injury is determined by the success of repair. Liver repair involves replacement of damaged liver tissue with healthy liver epithelial cells (including both hepatocytes and cholangiocytes) and reconstruction of normal liver structure and function. Current dogma posits that replication of surviving mature hepatocytes and cholangiocytes drives the regeneration of liver epithelium after injury, whereas failure of liver repair commonly leads to fibrosis, a scarring condition in which hepatic stellate cells, the main liver-resident mesenchymal cells, play the major role. The present review discusses other mechanisms that might be responsible for the regeneration of new liver epithelial cells and outgrowth of matrix-producing mesenchymal cells during hepatic injury. This theory proposes that, during liver injury, some epithelial cells undergo epithelial-to-mesenchymal transition (EMT), acquire myofibroblastic phenotypes/features, and contribute to fibrogenesis, whereas certain mesenchymal cells (namely hepatic stellate cells and stellate cell-derived myofibroblasts) undergo mesenchymal-to-epithelial transition (MET), revert to epithelial cells, and ultimately differentiate into either hepatocytes or cholangiocytes. Although this theory is highly controversial, it suggests that the balance between EMT and MET modulates the outcome of liver injury. This review summarizes recent advances that support or refute the concept that certain types of liver cells are capable of phenotype transition (i.e., EMT and MET) during both culture conditions and chronic liver injury.


Sign in / Sign up

Export Citation Format

Share Document