scholarly journals Genome-wide diversity and global migration patterns in dromedaries follow ancient caravan routes

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sara Lado ◽  
Jean Pierre Elbers ◽  
Angela Doskocil ◽  
Davide Scaglione ◽  
Emiliano Trucchi ◽  
...  

AbstractDromedaries have been essential for the prosperity of civilizations in arid environments and the dispersal of humans, goods and cultures along ancient, cross-continental trading routes. With increasing desertification their importance as livestock species is rising rapidly, but little is known about their genome-wide diversity and demographic history. As previous studies using few nuclear markers found weak phylogeographic structure, here we detected fine-scale population differentiation in dromedaries across Asia and Africa by adopting a genome-wide approach. Global patterns of effective migration rates revealed pathways of dispersal after domestication, following historic caravan routes like the Silk and Incense Roads. Our results show that a Pleistocene bottleneck and Medieval expansions during the rise of the Ottoman empire have shaped genome-wide diversity in modern dromedaries. By understanding subtle population structure we recognize the value of small, locally adapted populations and appeal for securing genomic diversity for a sustainable utilization of this key desert species.

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 832
Author(s):  
Nina Moravčíková ◽  
Radovan Kasarda ◽  
Radoslav Židek ◽  
Luboš Vostrý ◽  
Hana Vostrá-Vydrová ◽  
...  

This study focused on the genomic differences between the Czechoslovakian wolfdog (CWD) and its ancestors, the Grey wolf (GW) and German Shepherd dog. The Saarloos wolfdog and Belgian Shepherd dog were also included to study the level of GW genetics retained in the genome of domesticated breeds. The dataset consisted of 131 animals and 143,593 single nucleotide polymorphisms (SNPs). The effects of demographic history on the overall genome structure were determined by screening the distribution of the homozygous segments. The genetic variance distributed within and between groups was quantified by genetic distances, the FST index, and discriminant analysis of principal components. Fine-scale population stratification due to specific morphological and behavioural traits was assessed by principal component and factorial analyses. In the CWD, a demographic history effect was manifested mainly in a high genome-wide proportion of short homozygous segments corresponding to a historical load of inbreeding derived from founders. The observed proportion of long homozygous segments indicated that the inbreeding events shaped the CWD genome relatively recently compared to other groups. Even if there was a significant increase in genetic similarity among wolf-like breeds, they were genetically separated from each other. Moreover, this study showed that the CWD genome carries private alleles that are not found in either wolves or other dog breeds analysed in this study.


2019 ◽  
Author(s):  
Lewis G. Spurgin ◽  
Mirte Bosse ◽  
Frank Adriaensen ◽  
Tamer Albayrak ◽  
Christos Barboutis ◽  
...  

AbstractA major aim of evolutionary biology is to understand why patterns of genomic diversity vary among populations and species. Large-scale genomic studies of widespread species are useful for studying how the environment and demographic history shape patterns of genomic divergence, and with the continually decreasing cost of sequencing and genotyping, such studies are now becoming feasible. Here, we carry out one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning almost the entire geographic range of the European great tit subspecies. We found that genome-wide variation was consistent with a recent colonisation across Europe from a single refugium in South-East Europe, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear “islands of differentiation” even among populations with very low levels of genome-wide differentiation. Low local recombination rate in the genome was a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination is a key driver of highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, most likely as a result of recent directional selection at the range edges of this species. Haplotype-based measures of selection were also related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. These regions under positive selection contained candidate genes associated with morphology, thermal adaptation and colouration, providing promising avenues for future investigation. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into evolution.


2021 ◽  
Author(s):  
Taya L. Forde ◽  
Tristan P. W. Dennis ◽  
O. Rhoda Aminu ◽  
William T. Harvey ◽  
Ayesha Hassim ◽  
...  

AbstractGenomic sequencing has revolutionized our understanding of bacterial disease epidemiology, but remains underutilized for zoonotic pathogens in remote endemic settings. Anthrax, caused by the spore-forming bacterium Bacillus anthracis, remains a threat to human and animal health and rural livelihoods in low- and middle-income countries. While the global genomic diversity of B. anthracis has been well-characterized, there is limited information on how its populations are genetically structured at the scale at which transmission occurs, critical for understanding the pathogen’s evolution and transmission dynamics. Using a uniquely rich dataset, we quantified genome-wide single nucleotide polymorphisms (SNPs) among 73 B. anthracis isolates derived from 33 livestock carcasses sampled over one year throughout the Ngorongoro Conservation Area, Tanzania, an area hyperendemic for anthrax. Genome-wide SNPs distinguished 22 unique B. anthracis genotypes within the study area. However, phylogeographic structure was lacking, as identical SNP profiles were found throughout the study area, likely the result of the long and variable periods of spore dormancy and long-distance livestock movements. Significantly, divergent genotypes were obtained from spatio-temporally linked cases and even individual carcasses. The high number of SNPs distinguishing isolates from the same host is unlikely to have arisen during infection, as supported by our simulation models. This points to an unexpectedly wide transmission bottleneck for B. anthracis, with an inoculum comprising multiple variants being the norm. Our work highlights that inferring transmission patterns of B. anthracis from genomic data will require analytical approaches that account for extended and variable environmental persistence as well as co-infection.ImportancePathogens transmitted between animals and people affect the health and livelihoods of farmers, particularly in developing countries dependent on livestock. Understanding over what distances these pathogens are transmitted and how they evolve is important to inform control strategies towards reducing disease impacts. Information on the circulation of Bacillus anthracis, which causes the often-lethal disease anthrax, is lacking for settings where the disease is commonplace. Consequently, we examined its genetic variability in an area in Tanzania where anthrax is widespread. We found no clear link between how closely cases were sampled and their genetic similarity. We suspect this lack of congruence is primarily driven by large-scale livestock movements, which control efforts should take into consideration. Another significant finding was the co-occurrence of multiple B. anthracis types within individual hosts, suggesting animals are commonly infected with a mixture of variants. This needs to be accounted for when investigating possible connections between cases.


2019 ◽  
Author(s):  
Linda Ongaro ◽  
Marilia O. Scliar ◽  
Rodrigo Flores ◽  
Alessandro Raveane ◽  
Davide Marnetto ◽  
...  

AbstractThe human genetic diversity of the Americas has been shaped by several events of gene flow that have continued since the Colonial Era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored.Here we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected i) the genetic structure, ii) the admixture profile, iii) the demographic history and iv) sex-biased gene-flow dynamics, of the Americas.We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East and to specific regions of Africa.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Shijing Feng ◽  
Zhenshan Liu ◽  
Yang Hu ◽  
Jieyun Tian ◽  
Tuxi Yang ◽  
...  

Abstract Chinese pepper, mainly including Zanthoxylum bungeanum and Zanthoxylum armatum, is an economically important crop popular in Asian countries due to its unique taste characteristics and potential medical uses. Numerous cultivars of Chinese pepper have been developed in China through long-term domestication. To better understand the population structure, demographic history, and speciation of Chinese pepper, we performed a comprehensive analysis at a genome-wide level by analyzing 38,395 genomic SNPs that were identified in 112 cultivated and wild accessions using a high-throughput genome-wide genotyping-by-sequencing (GBS) approach. Our analysis provides genetic evidence of multiple splitting events occurring between and within species, resulting in at least four clades in Z. bungeanum and two clades in Z. armatum. Despite no evidence of recent admixture between species, we detected substantial gene flow within species. Estimates of demographic dynamics and species distribution modeling suggest that climatic oscillations during the Pleistocene (including the Penultimate Glaciation and the Last Glacial Maximum) and recent domestication events together shaped the demography and evolution of Chinese pepper. Our analyses also suggest that southeastern Gansu province is the most likely origin of Z. bungeanum in China. These findings provide comprehensive insights into genetic diversity, population structure, demography, and adaptation in Zanthoxylum.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dhriti Sengupta ◽  
◽  
Ananyo Choudhury ◽  
Cesar Fortes-Lima ◽  
Shaun Aron ◽  
...  

AbstractSouth Eastern Bantu-speaking (SEB) groups constitute more than 80% of the population in South Africa. Despite clear linguistic and geographic diversity, the genetic differences between these groups have not been systematically investigated. Based on genome-wide data of over 5000 individuals, representing eight major SEB groups, we provide strong evidence for fine-scale population structure that broadly aligns with geographic distribution and is also congruent with linguistic phylogeny (separation of Nguni, Sotho-Tswana and Tsonga speakers). Although differential Khoe-San admixture plays a key role, the structure persists after Khoe-San ancestry-masking. The timing of admixture, levels of sex-biased gene flow and population size dynamics also highlight differences in the demographic histories of individual groups. The comparisons with five Iron Age farmer genomes further support genetic continuity over ~400 years in certain regions of the country. Simulated trait genome-wide association studies further show that the observed population structure could have major implications for biomedical genomics research in South Africa.


2019 ◽  
Vol 51 (1) ◽  
Author(s):  
Maulik Upadhyay ◽  
Susanne Eriksson ◽  
Sofia Mikko ◽  
Erling Strandberg ◽  
Hans Stålhammar ◽  
...  

Abstract Background Native cattle breeds are important genetic resources given their adaptation to the local environment in which they are bred. However, the widespread use of commercial cattle breeds has resulted in a marked reduction in population size of several native cattle breeds worldwide. Therefore, conservation management of native cattle breeds requires urgent attention to avoid their extinction. To this end, we genotyped nine Swedish native cattle breeds with genome-wide 150 K single nucleotide polymorphisms (SNPs) to investigate the level of genetic diversity and relatedness between these breeds. Results We used various SNP-based approaches on this dataset to connect the demographic history with the genetic diversity and population structure of these Swedish cattle breeds. Our results suggest that the Väne and Ringamåla breeds originating from southern Sweden have experienced population isolation and have a low genetic diversity, whereas the Fjäll breed has a large founder population and a relatively high genetic diversity. Based on the shared ancestry and the constructed phylogenetic trees, we identified two major clusters in Swedish native cattle. In the first cluster, which includes Swedish mountain cattle breeds, there was little differentiation among the Fjäll, Fjällnära, Swedish Polled, and Bohus Polled breeds. The second cluster consists of breeds from southern Sweden: Väne, Ringamåla and Swedish Red. Interestingly, we also identified sub-structuring in the Fjällnära breed, which indicates different breeding practices on the farms that maintain this breed. Conclusions This study represents the first comprehensive genome-wide analysis of the genetic relatedness and diversity in Swedish native cattle breeds. Our results show that different demographic patterns such as genetic isolation and cross-breeding have shaped the genomic diversity of Swedish native cattle breeds and that the Swedish mountain breeds have retained their authentic distinct gene pool without significant contribution from any of the other European cattle breeds that were included in this study.


2016 ◽  
Vol 48 (1) ◽  
Author(s):  
Arianna Manunza ◽  
Antonia Noce ◽  
Juan Manuel Serradilla ◽  
Félix Goyache ◽  
Amparo Martínez ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Humberto García-Ortiz ◽  
Francisco Barajas-Olmos ◽  
Cecilia Contreras-Cubas ◽  
Miguel Ángel Cid-Soto ◽  
Emilio J. Córdova ◽  
...  

AbstractThe genetic makeup of Indigenous populations inhabiting Mexico has been strongly influenced by geography and demographic history. Here, we perform a genome-wide analysis of 716 newly genotyped individuals from 60 of the 68 recognized ethnic groups in Mexico. We show that the genetic structure of these populations is strongly influenced by geography, and our demographic reconstructions suggest a decline in the population size of all tested populations in the last 15–30 generations. We find evidence that Aridoamerican and Mesoamerican populations diverged roughly 4–9.9 ka, around the time when sedentary farming started in Mesoamerica. Comparisons with ancient genomes indicate that the Upward Sun River 1 (USR1) individual is an outgroup to Mexican/South American Indigenous populations, whereas Anzick-1 was more closely related to Mesoamerican/South American populations than to those from Aridoamerica, showing an even more complex history of divergence than recognized so far.


2020 ◽  
Author(s):  
Tlou Caswell Chokoe ◽  
Khanyi Hadebe ◽  
Farai Muchadeyi ◽  
Khathutshelo Nephawe ◽  
Edgar Dzomba ◽  
...  

Abstract Background: Indigenous goats forms the majority of populations in smallholder; low input, low output production systems and are considered an important genetic resource due to their adaptability to different production environments and support communal farming. Effective population size (Ne), inbreeding levels, and the runs of homozygosity (ROHs) are effective tools for exploring the genetic diversity and understanding the demographic history in efforts to support breeding strategies to use and conserve genetic resources. Results: Across populations, the current Ne of Gauteng was the lowest at 371 animals, while the historical Ne across populations suggests that the ancestor Ne has decreased by 53.86%, 44.58%, 42.16% and 41.16% in Free State (FS), North West (NW), Limpopo (LP) and Gauteng (GP), respectively, over the last 971 generations. Genomic inbreeding levels related to ancient kinship (FROH >5Mb) was highest in FS (0.08±0.09) and lowest for Eastern Cape (EC) (0.02±0.02). A total of 871 ROH island regions which include important environmental adaptation and hermo-tolerance genes such as IL10RB, IL23A, FGF9, IGF1, EGR1, MTOR and MAPK3 were identified (occurring in over 20% of the samples) in FS (n = 37), GP (n = 42), NW (n = 2) populations only. The mean length of ROH across populations was 7.76Mb and ranged from 1.61Mb KwaZulu-Natal (KZN) to 98.05Mb (GP and NW). Distribution of ROH according to their size showed that the majority (n = 1949) of the detected ROH were >5Mb in length than the other categories. Assuming two hypothetical ancestral populations, the population from KZN and LP are revealed, supporting PC 1. The genomes of KZN and LP shared an origin but have substantial admixture from the EC and NW populations.Conclusions: These findings indicated a greater negative impact of inbreeding in recent times which is important for planning conservation strategies. It was revealed that the occurrence of high Ne and autozygosity varied largely across breeds in communal indigenous goat populations at different recent and ancient events when a genome-wide SNP marker was used.


Sign in / Sign up

Export Citation Format

Share Document