scholarly journals The genomic impact of European colonization of the Americas

2019 ◽  
Author(s):  
Linda Ongaro ◽  
Marilia O. Scliar ◽  
Rodrigo Flores ◽  
Alessandro Raveane ◽  
Davide Marnetto ◽  
...  

AbstractThe human genetic diversity of the Americas has been shaped by several events of gene flow that have continued since the Colonial Era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored.Here we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected i) the genetic structure, ii) the admixture profile, iii) the demographic history and iv) sex-biased gene-flow dynamics, of the Americas.We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East and to specific regions of Africa.

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Jessica Nye ◽  
Mayukh Mondal ◽  
Jaume Bertranpetit ◽  
Hafid Laayouni

Abstract After diverging, each chimpanzee subspecies has been the target of unique selective pressures. Here, we employ a machine learning approach to classify regions as under positive selection or neutrality genome-wide. The regions determined to be under selection reflect the unique demographic and adaptive history of each subspecies. The results indicate that effective population size is important for determining the proportion of the genome under positive selection. The chimpanzee subspecies share signals of selection in genes associated with immunity and gene regulation. With these results, we have created a selection map for each population that can be displayed in a genome browser (www.hsb.upf.edu/chimp_browser). This study is the first to use a detailed demographic history and machine learning to map selection genome-wide in chimpanzee. The chimpanzee selection map will improve our understanding of the impact of selection on closely related subspecies and will empower future studies of chimpanzee.


2016 ◽  
Author(s):  
Bethany Signal ◽  
Brian S Gloss ◽  
Marcel E Dinger ◽  
Timothy R Mercer

ABSTRACTBackgroundThe branchpoint element is required for the first lariat-forming reaction in splicing. However due to difficulty in experimentally mapping at a genome-wide scale, current catalogues are incomplete.ResultsWe have developed a machine-learning algorithm trained with empirical human branchpoint annotations to identify branchpoint elements from primary genome sequence alone. Using this approach, we can accurately locate branchpoints elements in 85% of introns in current gene annotations. Consistent with branchpoints as basal genetic elements, we find our annotation is unbiased towards gene type and expression levels. A major fraction of introns was found to encode multiple branchpoints raising the prospect that mutational redundancy is encoded in key genes. We also confirmed all deleterious branchpoint mutations annotated in clinical variant databases, and further identified thousands of clinical and common genetic variants with similar predicted effects.ConclusionsWe propose the broad annotation of branchpoints constitutes a valuable resource for further investigations into the genetic encoding of splicing patterns, and interpreting the impact of common- and disease-causing human genetic variation on gene splicing.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009317
Author(s):  
Ilario De Toma ◽  
Cesar Sierra ◽  
Mara Dierssen

Trisomy of human chromosome 21 (HSA21) causes Down syndrome (DS). The trisomy does not simply result in the upregulation of HSA21--encoded genes but also leads to a genome-wide transcriptomic deregulation, which affect differently each tissue and cell type as a result of epigenetic mechanisms and protein-protein interactions. We performed a meta-analysis integrating the differential expression (DE) analyses of all publicly available transcriptomic datasets, both in human and mouse, comparing trisomic and euploid transcriptomes from different sources. We integrated all these data in a “DS network”. We found that genome wide deregulation as a consequence of trisomy 21 is not arbitrary, but involves deregulation of specific molecular cascades in which both HSA21 genes and HSA21 interactors are more consistently deregulated compared to other genes. In fact, gene deregulation happens in “clusters”, so that groups from 2 to 13 genes are found consistently deregulated. Most of these events of “co-deregulation” involve genes belonging to the same GO category, and genes associated with the same disease class. The most consistent changes are enriched in interferon related categories and neutrophil activation, reinforcing the concept that DS is an inflammatory disease. Our results also suggest that the impact of the trisomy might diverge in each tissue due to the different gene set deregulation, even though the triplicated genes are the same. Our original method to integrate transcriptomic data confirmed not only the importance of known genes, such as SOD1, but also detected new ones that could be extremely useful for generating or confirming hypotheses and supporting new putative therapeutic candidates. We created “metaDEA” an R package that uses our method to integrate every kind of transcriptomic data and therefore could be used with other complex disorders, such as cancer. We also created a user-friendly web application to query Ensembl gene IDs and retrieve all the information of their differential expression across the datasets.


2020 ◽  
Vol 10 (9) ◽  
pp. 3061-3070 ◽  
Author(s):  
Marja E Heikkinen ◽  
Minna Ruokonen ◽  
Thomas A White ◽  
Michelle M Alexander ◽  
İslam Gündüz ◽  
...  

Abstract Hybridization has frequently been observed between wild and domestic species and can substantially impact genetic diversity of both counterparts. Geese show some of the highest levels of interspecific hybridization across all bird orders, and two of the goose species in the genus Anser have been domesticated providing an excellent opportunity for a joint study of domestication and hybridization. Until now, knowledge of the details of the goose domestication process has come from archaeological findings and historical writings supplemented with a few studies based on mitochondrial DNA. Here, we used genome-wide markers to make the first genome-based inference of the timing of European goose domestication. We also analyzed the impact of hybridization on the genome-wide genetic variation in current populations of the European domestic goose and its wild progenitor: the graylag goose (Anser anser). Our dataset consisted of 58 wild graylags sampled around Eurasia and 75 domestic geese representing 14 breeds genotyped for 33,527 single nucleotide polymorphisms. Demographic reconstruction and clustering analysis suggested that divergence between wild and domestic geese around 5,300 generations ago was followed by long-term genetic exchange, and that graylag populations have 3.2–58.0% admixture proportions with domestic geese, with distinct geographic patterns. Surprisingly, many modern European breeds share considerable (> 10%) ancestry with the Chinese domestic geese that is derived from the swan goose Anser cygnoid. We show that the domestication process can progress despite continued and pervasive gene flow from the wild form.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sara Lado ◽  
Jean Pierre Elbers ◽  
Angela Doskocil ◽  
Davide Scaglione ◽  
Emiliano Trucchi ◽  
...  

AbstractDromedaries have been essential for the prosperity of civilizations in arid environments and the dispersal of humans, goods and cultures along ancient, cross-continental trading routes. With increasing desertification their importance as livestock species is rising rapidly, but little is known about their genome-wide diversity and demographic history. As previous studies using few nuclear markers found weak phylogeographic structure, here we detected fine-scale population differentiation in dromedaries across Asia and Africa by adopting a genome-wide approach. Global patterns of effective migration rates revealed pathways of dispersal after domestication, following historic caravan routes like the Silk and Incense Roads. Our results show that a Pleistocene bottleneck and Medieval expansions during the rise of the Ottoman empire have shaped genome-wide diversity in modern dromedaries. By understanding subtle population structure we recognize the value of small, locally adapted populations and appeal for securing genomic diversity for a sustainable utilization of this key desert species.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
George BJ Busby ◽  
Gavin Band ◽  
Quang Si Le ◽  
Muminatou Jallow ◽  
Edith Bougama ◽  
...  

Similarity between two individuals in the combination of genetic markers along their chromosomes indicates shared ancestry and can be used to identify historical connections between different population groups due to admixture. We use a genome-wide, haplotype-based, analysis to characterise the structure of genetic diversity and gene-flow in a collection of 48 sub-Saharan African groups. We show that coastal populations experienced an influx of Eurasian haplotypes over the last 7000 years, and that Eastern and Southern Niger-Congo speaking groups share ancestry with Central West Africans as a result of recent population expansions. In fact, most sub-Saharan populations share ancestry with groups from outside of their current geographic region as a result of gene-flow within the last 4000 years. Our in-depth analysis provides insight into haplotype sharing across different ethno-linguistic groups and the recent movement of alleles into new environments, both of which are relevant to studies of genetic epidemiology.


2019 ◽  
Vol 8 (3) ◽  
pp. 332 ◽  
Author(s):  
Chia-Shan Hsieh ◽  
Pang-Shuo Huang ◽  
Sheng-Nan Chang ◽  
Cho-Kai Wu ◽  
Juey-Jen Hwang ◽  
...  

Atrial fibrillation (AF) is a common cardiac arrhythmia and is one of the major causes of ischemic stroke. In addition to the clinical factors such as CHADS2 or CHADS2-VASC score, the impact of genetic factors on the risk of thromboembolic stroke in patients with AF has been largely unknown. Single-nucleotide polymorphisms in several genomic regions have been found to be associated with AF. However, these loci do not contribute to all the genetic risks of AF or AF related thromboembolic risks, suggesting that there are other genetic factors or variants not yet discovered. In the human genome, copy number variations (CNVs) could also contribute to disease susceptibility. In the present study, we sought to identify CNVs determining the AF-related thromboembolic risk. Using a genome-wide approach in 109 patients with AF and thromboembolic stroke and 14,666 controls from the Taiwanese general population (Taiwan Biobank), we first identified deletions in chromosomal regions 1p36.32-1p36.33, 5p15.33, 8q24.3 and 19p13.3 and amplifications in 14q11.2 that were significantly associated with AF-related stroke in the Taiwanese population. In these regions, 148 genes were involved, including several microRNAs and long non-recoding RNAs. Using a pathway analysis, we found deletions in GNB1, PRKCZ, and GNG7 genes related to the alpha-adrenergic receptor signaling pathway that play a major role in determining the risk of an AF-related stroke. In conclusion, CNVs may be genetic predictors of a risk of a thromboembolic stroke for patients with AF, possibly pointing to an impaired alpha-adrenergic signaling pathway in the mechanism of AF-related thromboembolism.


Author(s):  
Toby E. Newman ◽  
Silke Jacques ◽  
Christy Grime ◽  
Fiona L. Kamphuis ◽  
Robert C. Lee ◽  
...  

Chickpea production is constrained worldwide by the necrotrophic fungal pathogen Ascochyta rabiei, the causal agent of ascochyta blight (AB). In order to reduce the impact of this disease, novel sources of resistance are required in chickpea cultivars. Here, we screened a new collection of wild Cicer accessions for AB resistance and identified accessions resistant to multiple, highly pathogenic isolates. In addition to this, analyses demonstrated that some collection sites of Cicer echinospermum harbour predominantly resistant accessions, knowledge that can inform future collection missions. Furthermore, a genome-wide association study identified regions of the Cicer reticulatum genome associated with AB resistance and investigation of these regions identified candidate resistance genes. Taken together, these results can be utilised to enhance the resistance of chickpea cultivars to this globally yield-limiting disease.


2020 ◽  
Author(s):  
Rosa Fregel ◽  
Alejandra C Ordóñez ◽  
Javier G Serrano

Abstract The establishment of European colonies across the world had important demographic consequences because it brought together diverse and distant civilizations for the first time. One clear example of this phenomenon is observed in the Canary Islands. The modern Canarian population is mainly the result of the admixture of natives of North African origin and European colonizers. However, additional migratory flows reached the islands due to the importation of enslaved Africans to cultivate sugarcane and the intense commercial contact with the American continent. In this review, we evaluate how the genetic analysis of indigenous, historical, and current populations has provided a glimpse into the Canary Islands’ complex genetic composition. We show that each island subpopulation’s characterization is needed to fully disentangle the demographic history of the Canarian archipelago. Finally, we discuss what research avenues remain to be explored to improve our knowledge of the impact that the European colonization had on its native population.


Sign in / Sign up

Export Citation Format

Share Document