scholarly journals Thermosuperrepellency of a hot substrate caused by vapour percolation

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
J. Benedikt Schmidt ◽  
Julian Hofmann ◽  
Fabian M. Tenzer ◽  
Jan Breitenbach ◽  
Cameron Tropea ◽  
...  

AbstractDrop rebound after collision with a very hot substrate is usually attributed to the Leidenfrost effect, characterized by intensive film boiling in a thin vapour gap between the liquid and substrate. Similarly, drop impact onto a cold superhydrophobic substrate leads to a complete drop rebound, despite partial wetting of the substrate. Here we study the repellent properties of hot smooth hydrophilic substrates in the nucleate boiling, non-Leidenfrost regime and discover that the thermally induced repellency is associated with vapour percolation on the substrate. The wetting structure in the presence of the percolating vapour rivulets is analogous to the Cassie-Baxter wetting mode, which is a necessary condition for the repellency in the isothermal case. The theoretical predictions for the threshold temperature for vapour percolation agree well with the experimental data for drop rebound and correspond to the minimum heat flux when spray cooling.

2020 ◽  
Author(s):  
J. Benedikt Schmidt ◽  
Julian Hofmann ◽  
Fabian Tenzer ◽  
Jan Breitenbach ◽  
Cameron Tropea ◽  
...  

Abstract Drop rebound after collision with a very hot substrate is usually attributed to the Leidenfrost effect, [1-5] characterized by intensive film boiling in a thin vapour gap between the liquid and substrate. Similarly, drop impact onto a cold superhydrophobic substrate [6-8] leads to a complete drop rebound, despite partial wetting of the substrate. We have studied the repellent properties of hot smooth hydrophilic substrates in the nucleate boiling, non-Leidenfrost regime and discovered that the thermally induced repellency is associated with vapour percolation on the substrate. The wetting structure in the presence of the percolating vapour rivulets is analogous to the Cassie-Baxter wetting mode, [9] which is a necessary condition for the repellency in the isothermal case. The theoretical predictions for the threshold temperature for vapour percolation agree well with the experimental data for drop rebound and correspond to the minimum heat flux when spray cooling.


2021 ◽  
pp. 318-318
Author(s):  
Lidan Ning ◽  
Liping Zou ◽  
Zhichao Li ◽  
Huiping Li

Spray cooling experiments on the hot metallic surfaces with different initial temperatures were performed. This paper adopts a self-developing program which is based on the inverse heat transfer algorithm to solve the interfacial heat transfer coefficient and heat flux. The temperature-dependent interfacial heat transfer mechanism of water-air spray cooling is explored according to the wetting layer evolution taken by a high-speed camera and the surface cooling curves attained by the inverse heat transfer algorithm. Film boiling, transition boiling, and nucleate boiling stages can be noticed during spray cooling process of hot metallic surface. When the cooled surface?s temperature drops to approximately 369?C - 424?C; the cooling process transfers into the transition boiling stage from the film boiling stage. The wetting regime begins to appear on the cooled surface, the interfacial heat transfer coefficient and heat flux begin to increase significantly. When the cooled surface?s temperature drops to approximately 217?C - 280?C, the cooling process transfers into the nucleate boiling stage. The cooled surface was covered by a liquid film, and the heat flux begins to decrease significantly.


1964 ◽  
Vol 86 (3) ◽  
pp. 351-358 ◽  
Author(s):  
H. Merte ◽  
J. A. Clark

A study is reported of boiling heat transfer with saturated liquid nitrogen under atmospheric pressure at standard, fractional, and near-zero gravity. A drop-tower technique is used to achieve the reduced gravities. Because of the short test time available a transient technique using a sphere as a transient calorimeter is employed to obtain the heat-transfer data. This technique permits the ready acquisition of data in all boiling regimes from the film boiling region through nucleate boiling. Comparison is made with correlations for film boiling and for maximum and minimum heat flux and their corresponding Δtsat.


1962 ◽  
Vol 84 (4) ◽  
pp. 365-371 ◽  
Author(s):  
H. S. Swenson ◽  
J. R. Carver ◽  
G. Szoeke

In large, subcritical pressure, once-through power boilers heat is transferred to steam and water mixtures ranging in steam quality from zero per cent at the bottom of the furnace to 100 per cent at the top. In order to provide design information for this type of boiler, heat-transfer coefficients for forced convection film boiling were determined for water at 3000 psia flowing upward in a vertical stainless-steel tube, AISI Type 304, having an inside diameter of 0.408 inches and a heated length of 6 feet. Heat fluxes ranged between 90,000 and 180,000 Btu/hr-sq ft and were obtained by electrical resistance heating of the tube. The operation of the experimental equipment was controlled so that nucleate boiling, transition boiling, and stable film boiling occurred simultaneously in different zones of the tube. The film boiling data were correlated with a modified form of the equation Nu = a a(Re)m(Pr)n using steam properties evaluated at inside surface temperature. Results of a second series of heat-transfer tests with tubes having a helical rib on the inside surface showed that nucleate boiling could be maintained to much higher steam qualities with that type of tube than with a smooth-bore tube.


Author(s):  
L D Clark ◽  
I Rosindale ◽  
K Davey ◽  
S Hinduja ◽  
P J Dooling

The effect of boiling on the rate of heat extraction by cooling channels employed in pressure die casting dies is investigated. The cooling effect of the channels is simulated using a model that accounts for subcooled nucleate boiling and transitional film boiling as well as forced convection. The boiling model provides a continuous relationship between the rate of heat transfer and temperature, and can be applied to surfaces where forced convection, subcooled nucleate boiling and transitional film boiling are taking place in close proximity. The effects of physical parameters such as flow velocity, degree of subcooling, system pressure and bulk temperature are taken into account. Experimental results are obtained using a rig that simulates the pressure die casting process. The results are compared with the model predictions and are found to show good agreement. Instrumented field tests, on an industrial die casting machine, are also reported. These tests show the beneficial effects of boiling heat transfer in the pressure die casting process, including a 75 per cent increase in the production rate for the test component.


Author(s):  
Bambang Joko Suroto ◽  
Masahiro Tashiro ◽  
Sana Hirabayashi ◽  
Sumitomo Hidaka ◽  
Masamichi Kohno ◽  
...  

The effects of hydrophobic circle spot size and subcooling on local film boiling phenomenon from the copper surface with single PTFE (Polytetrafluoroethylene) hydrophobic circle spot at low heat flux has been investigated. The experiments were performed using pure water as the working fluid and subcooling ranging from 0 and 10K. The heat transfer surfaces are used polished copper block with single PTFE hydrophobic circle spot of diameters 2, 4 and 6 mm, respectively. A high-speed camera was used to capture bubble dynamics and disclosed the sequence of the process leading to local film boiling. The result shows that local films boiling occurs on the PTFE circle spot at low heat flux and was triggered by the merging of neighboring bubbles. The study also showed that transition time required for change from nucleate boiling regime to local film boiling regime depends on the diameter of the hydrophobic circle spot and the subcooling. A stable local film boiling occurs at the smallest diameter of hydrophobic spot. Subcooling cause the local film boiling occur at negative superheat and oscillation of bubble dome.


1992 ◽  
Vol 114 (3) ◽  
pp. 695-702 ◽  
Author(s):  
J. Orozco ◽  
H. Francisco

A boundary layer model of laminar, subcooled, free convection film boiling from a rotating sphere has been developed. The conservation equations for the vapor and liquid were simplified, transformed into ordinary differential equations using an integral approach, and solved numerically. The theoretical variation of vapor film thickness with heater temperature and the resulting boiling fluxes were investigated. An experimental facility was built for the purpose of verifying the validity of the theoretical model and good agreement was found between the model and the experimental data at low rpm. The instability of the vapor film near the minimum heat flux for a rotating surface flux was also investigated.


2021 ◽  
Author(s):  
Jun Dong ◽  
Hao Wang ◽  
Samuel Darr ◽  
Jason Hartwig ◽  
Jacob Chung

Abstract This is the second part of a two-part series that presents the results of liquid nitrogen spray quenching of a Stainless Steel disc. The results of continuous-flow spray chilldown of a bare surface disc are summarized first that serves as the baseline information for evaluating the effects of disc surface coating and pulse flow. We found that for continuous-flow spray chilldown of a bare surface disc, the chilldown efficiency is mainly a function of the average mass flow rate with the trend of decreasing efficiency with increasing mass flow rate. Additional experiments were performed to evaluate the enhancement of cryogenic spray quenching by three techniques: 1. Using intermittent pulse sprays on SS bare surface, 2. Coating the SS surface with a layer of low thermal conductivity Teflon film, and 3. Spraying liquid nitrogen intermittently on the coated SS surface. In general, the results indicate that all three methods effectively produced higher spray thermal efficiencies and reduced liquid nitrogen mass consumption. However, it was also found that the Teflon coating was more effective than the flow pulsing due to that the Teflon coating induced a large surface temperature drop at the beginning of the chilldown that allowed the quenching to move quickly from poor heat transfer film boiling to efficient heat transfer transition and nucleate boiling regimes. This quick transition shortens the film boiling period, thus facilitates the switch to much higher heat transfer transition boiling and nucleate boiling periods earlier to complete the chilldown process faster.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Vijay K. Dhir ◽  
Gopinath R. Warrier ◽  
Eduardo Aktinol

A review of numerical simulation of pool boiling is presented. Details of the numerical models and results obtained for single bubble, multiple bubbles, nucleate boiling, and film boiling are provided. The effect of such parameters such as wall superheat, liquid subcooling, contact angle, gravity level, noncondensables, and conjugate heat transfer are also included. The numerical simulation results have been validated with data from well designed experiments.


Sign in / Sign up

Export Citation Format

Share Document