scholarly journals Madden-Julian oscillation winds excite an intraseasonal see-saw of ocean mass that affects Earth’s polar motion

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
M. Afroosa ◽  
B. Rohith ◽  
Arya Paul ◽  
Fabien Durand ◽  
Romain Bourdallé-Badie ◽  
...  

AbstractStrong large-scale winds can relay their energy to the ocean bottom and elicit an almost immediate intraseasonal barotropic (depth independent) response in the ocean. The intense winds associated with the Madden-Julian Oscillation over the Maritime Continent generate significant intraseasonal basin-wide barotropic sea level variability in the tropical Indian Ocean. Here we show, using a numerical model and a network of in-situ bottom pressure recorders, that the concerted barotropic response of the Indian and the Pacific Ocean to these winds leads to an intraseasonal see-saw of oceanic mass in the Indo-Pacific basin. This global-scale mass shift is unexpectedly fast, as we show that the mass field of the entire Indo-Pacific basin is dynamically adjusted to Madden-Julian Oscillation in a few days. We find this large-scale ocean see-saw, induced by the Madden-Julian Oscillation, has a detectable influence on the Earth’s polar axis motion, in particular during the strong see-saw of early 2013.

2020 ◽  
Author(s):  
M Afroosa ◽  
B Rohith ◽  
Arya Paul ◽  
Fabien Durand ◽  
Romain Bourdallé-Badie ◽  
...  

Abstract Strong large-scale winds can relay their energy to the ocean bottom and elicit an almost immediate intraseasonal barotropic (depth independent) response in the ocean. The intense winds associated with the Madden-Julian Oscillation (MJO), over the tropical interface between the Indian Ocean and the Pacific Ocean (popularly known as Maritime Continent) generate significant basin-wide intraseasonal barotropic sea level variability in the tropical Indian Ocean. Here we show, using an ocean general circulation model and a network of in-situ bottom pressure recorders, that the concerted barotropic response of the Indian and the Pacific Ocean to these winds leads to an intraseasonal see-saw of oceanic mass in the Indo-Pacific basin. This global-scale mass shift is unexpectedly fast, as we show that the mass field of the entire Indo-Pacific basin is dynamically adjusted to MJO in a few days. We also explain how this near-global-scale MJO-induced oceanic phenomenon is the first signature from a climate mode that can be isolated into the Earth polar axis motion, in particular during the strong see-saw of early 2013.


2020 ◽  
Author(s):  
Hitoshi Kawakatsu ◽  
Hisashi Utada ◽  
Sang-Mook Lee ◽  
YoungHee Kim ◽  
Hajime Shiobara ◽  
...  

<p>With a simple crustal structure and short geological history, ocean basins provide an unblemished view into mantle dynamics, including convective flow and melting processes that control deformation and evolution of Earth’s surface. With the full spectrum of plate-boundary processes and abundant mid-plate volcanism sourced deep in the mantle, the Pacific basin provides an outstanding setting to explore connections between shallow dynamics and the deep interior. Exploiting advances in seafloor instrumentation, research groups in Japan, the US, and elsewhere have demonstrated the utility of broadband ocean-bottom seismic and EM arrays for providing new, high-resolution constraints on mantle structure and dynamics. These activities have coalesced into the international collaboration Pacific Array, which seeks to merge individual efforts into a large-scale "array of arrays" that will effectively cover the entire Pacific basin diachronously over a decadal time scale.</p><p>    As a part of the Pacific Array initiative, a team comprised of scientists from Japan and South Korea has completed the Oldest Array observation on the oldest seafloor in the western Pacific. Oldest Array consists of 12-seismic and 7-EM array that was deployed in Oct-Nov, 2018, for a duration of 12 months, followed by a successfully recovered in Oct-Nov, 2019. The instruments and vessels are respectively provided by ERI and KIOST. The array covers the northwestern side of the ~170Ma old magnetic lineation triangle aiming to delineate the lithosphere-asthenosphere system beneath the oldest Pacific basin to elucidate the enigma of seafloor flattening, as well as the dynamics of the birth of Pacific plate. The initial look at data indicates beautiful recordings, and we plan to report the first analysis results at the meeting.</p>


Geophysics ◽  
1967 ◽  
Vol 32 (4) ◽  
pp. 678-707 ◽  
Author(s):  
M. L. Richards ◽  
V. Vacquier ◽  
G. D. Van Voorhis

The direction and magnitude of the magnetization of a uniformly magnetized structure can be computed by combining topographic and magnetic surveys. The previously reported method has been extended to include more than one structure, each possessing its particular magnetization. Also, the bottom of the structure need not be a horizontal plane but can be an arbitrary surface. The method was applied to 21 seamounts, one laccolith and two Aleutian volcanoes. Four of the seamounts were found to be reversely magnetized. The virtual paleomagnetic pole positions for 16 Pacific Ocean seamounts, representing three widely separated locations, are significantly different from the present geomagnetic pole position but near Mesozoic virtual pole positions from Australia. For two locations, radiometric age determinations give an average date for their formation in the Cretaceous. The apparent 30 degree shift in geomagnetic latitude of the seamounts is interpreted as the result of large scale movements of the Pacific Ocean floor or, alternatively, as the result of the paleomagnetic equator being north of its present position in the Pacific during the growth of the seamounts.


1983 ◽  
Vol 20 (6) ◽  
pp. 994-999 ◽  
Author(s):  
Zvi Ben-Avraham ◽  
Amos Nur

On land much of the Pacific margin is composed of allochthonous terranes, which are of continental and noncontinental origins. In the oceans numerous oceanic rises, some of which are submerged continental fragments, are presently embedded in the oceanic plates. These oceanic rises are probably future accreted terranes. They thus represent one stage in the development of allochthonous terranes found in orogenic zones. Minerals found in these terranes were formed at locations that in the past could have been thousands of kilometres away. This is because some oceanic terranes were split into several parts that moved with their respective plates in different directions. Also, faulting at the continental margins caused large-scale concurrent and post-accretionary horizontal translations of hundreds of kilometres of the allochthonous terranes.Studying the allochthonous terranes may provide important information about the Paleozoic and early Mesozoic history of the Pacific Ocean, because most of the oceanic crust of this age has disappeared leaving only those allochthonous terranes that were once oceanic plateaus within this crust. Understanding the history of the Pacific basin plates and of the allochthonous terranes may lead to the discovery of minerals within the submerged oceanic plateaus.


Author(s):  
A. A. Sukhinov ◽  
A. A. Sukhinov ◽  
S. B. Kirilchik

The article is devoted to the suspensions’ distribution mathematical modeling in the Eastern Pacific Ocean for various scenarios for the ferromanganese nodules extraction. The suspensions propagation model with complex granulometric composition that can interact in an aqueous medium takes into account the suspensions microturbulent diffusion caused by the turbulent aqueous medium movement and the suspensions convection caused by the advective movement of water mass in the ocean; gravitational suspensions deposition under the gravity influence; mutual transitions between different fractions that make up the suspension; interaction of particles with the bottom and with the free surface.


2014 ◽  
Vol 178 (3) ◽  
pp. 58-67
Author(s):  
Igor V. Volvenko

The Bering Sea, ​​Okhotsk Sea, Japan/East Sea and adjacent waters of the Pacific Ocean (mainly within EEZ of Russia) are compared by abundance of pelagic and benthic macrofauna, its species richness, evenness, diversity, and mean weight of animals using the data of long-term large-scale pelagic and bottom trawl surveys conducted by Pacific Fish. Res. Center (TINRO) in 1977-2010.


Ocean Science ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 383-392
Author(s):  
Jakub Velímský ◽  
Neesha R. Schnepf ◽  
Manoj C. Nair ◽  
Natalie P. Thomas

Abstract. Marine electromagnetic (EM) signals largely depend on three factors: flow velocity, Earth's main magnetic field, and seawater's electrical conductivity (which depends on the local temperature and salinity). Because of this, there has been recent interest in using marine EM signals to monitor and study ocean circulation. Our study utilizes voltage data from retired seafloor telecommunication cables in the Pacific Ocean to examine whether such cables could be used to monitor circulation velocity or transport on large oceanic scales. We process the cable data to isolate the seasonal and monthly variations and then evaluate the correlation between the processed data and numerical predictions of the electric field induced by an estimate of ocean circulation. We find that the correlation between cable voltage data and numerical predictions strongly depends on both the strength and coherence of the model velocities flowing across the cable, the local EM environment, as well as the length of the cable. The cable within the Kuroshio Current had good correlation between data and predictions, whereas two of the cables in the Eastern Pacific Gyre – a region with both low flow speeds and interfering velocity directions across the cable – did not have any clear correlation between data and predictions. Meanwhile, a third cable also located in the Eastern Pacific Gyre showed good correlation between data and predictions – although the cable is very long and the speeds were low, it was located in a region of coherent flow velocity across the cable. While much improvement is needed before utilizing seafloor voltage cables to study and monitor oceanic circulation across wide regions, we believe that with additional work, the answer to the question of whether or not seafloor voltage cables can be used to study large-scale circulation may eventually be yes.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Nicolai Bailly ◽  
Jeannette Bedard ◽  
Michael Böhmer ◽  
Jeff Bosma ◽  
Dirk Brussow ◽  
...  

AbstractThe STRings for Absorption length in Water (STRAW) are the first in a series of pathfinders for the Pacific Ocean Neutrino Experiment (P-ONE), a future large-scale neutrino telescope in the north-eastern Pacific Ocean. STRAW consists of two $$150\,\mathrm {m}$$ 150 m long mooring lines instrumented with optical emitters and detectors. The pathfinder is designed to measure the attenuation length of the water and perform a long-term assessment of the optical background at the future P-ONE site. After 2 years of continuous operation, measurements from STRAW show an optical attenuation length of about 28 m at $$450\,\mathrm {nm}$$ 450 nm . Additionally, the data allow a study of the ambient undersea background. The overall optical environment reported here is comparable to other deep-water neutrino telescopes and qualifies the site for the deployment of P-ONE.


2010 ◽  
Vol 23 (15) ◽  
pp. 4192-4201 ◽  
Author(s):  
Paul E. Roundy ◽  
Lynn M. Gribble-Verhagen

Abstract Kelvin waves in the Pacific Ocean occasionally develop and propagate eastward together with anomalies of deep convection and low-level westerly wind. This pattern suggests coupling between the oceanic waves and atmospheric convection. A simple composite analysis based on observed coupled events from October through April demonstrates that this apparent coupled mode is associated with significant large anomalies in the global flow that extend to high latitudes. These high-latitude anomalies are significantly larger than those that are linearly associated with the El Niño–Southern Oscillation (ENSO), and they evolve on time scales between those of the Madden–Julian oscillation and ENSO, potentially providing an opportunity for enhanced subseasonal predictability in the flow of the global atmosphere.


Sign in / Sign up

Export Citation Format

Share Document