Facile fabrication of polycaprolactone/h-MoO3 nanocomposites and their structural, optical and electrical properties

RSC Advances ◽  
2015 ◽  
Vol 5 (120) ◽  
pp. 99074-99083 ◽  
Author(s):  
Somasundaram Saravanamoorthy ◽  
Arumugam Chandra Bose ◽  
Sivan Velmathi

Hexagonal molybdenum oxide (h-MoO3) nanocrystals with a flower-like hierarchical structure were successfully incorporated into polycaprolactone (PCL) matrix by a simple solution casting technique.

Author(s):  
Ahana Chatterjee ◽  
Biplab kumar Paul ◽  
Subrata Kar ◽  
Sukhen Das ◽  
Ruma Basu ◽  
...  

In an effort to improve the electrical properties of the electroactive Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP), we introduced a novel and simple approach to synthesize PVDF-HFP composite films by incorporating ultrahigh dilutions of two homeopathic medicines Ferrum metallicum (FM) and Zincum oxidatum (ZO) in different potencies. The homeo-PVDF-composite films (HPCF) were synthesized by simple solution casting technique. XRD, FESEM, FTIR studies were performed to check the presence of nanoparticles in the film. The electrical properties of the HPCF samples get enhanced significantly due to the incorporation of the medicines and the effect increases with the increase in potency of the medicines.


2015 ◽  
Vol 754-755 ◽  
pp. 29-33
Author(s):  
K. Ramly ◽  
A.S.A. Khiar

Films of starch/PEO blends were prepared via solution casting technique and their properties with different amount of ammonium nitrate, NH4NO3were compared. The measurement of conductivity at room temperature were carried out using impedance spectroscopy. The highest conductivity calculated is found to be 2.81±0.46 x 10-7Scm-1with addition of 35wt% NH4NO3 .


CrystEngComm ◽  
2021 ◽  
Author(s):  
Leilei Song ◽  
Siqi Li ◽  
Tao Li

A simple solution casting technique was developed to load ZIF-8 particles on three commercially available fibrous supports. Benefiting from the open structure and high surface area of these fibrous networks,...


2017 ◽  
Vol 24 (03) ◽  
pp. 1750038 ◽  
Author(s):  
A. M. ABDEL REHEEM ◽  
A. ATTA ◽  
T. A. AFIFY

In this work, PVA/Ag nanocomposites films were prepared using solution casting technique, these films were irradiated with Argon ion beam to modify the structure. The main objective of the study is to enhance the optical and electrical properties of the polymer nanocomposites films by irradiation. The conventional characterization techniques such as UV–Visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM) and dielectric measurement are employed to understand the structure–property relations. FTIR analysis of these composite films shows chemical changes and a significant impact on them can be observed after irradiation. After doping, the XRD data shows silver nanoparticles formation in the PVA polymer. The band gap energy of samples is decreased with increases in the concentration of silver nanoparticles and ion beam fluence, which gives clear indication that ion beam irradiation induced defects are formed in the composite systems. The electrical conductivity, dielectric loss [Formula: see text] and dielectric constant [Formula: see text] are increased with increasing ion beam fluence and Ag dopant concentration.


Author(s):  
Sudhanshu Singh ◽  
Umesh Kumar Dwivedi

In this critical review chapter, the authors explain the development of composite films of Barium Titanate (BaTiO3) and Poly (methyl methacrylate) prepared by solution casting technique. Different weight percentage composition of BaTiO3 has been selected to find out the best optimization condition for further investigation and correlate the results. The structural properties have been carried out at room temperature using XRD. Efforts have been made to correlate the results with investigated XRD results of pure BaTiO3 and its composites as observed by other workers at room temperature. The flow of experimental work and microscopic images are explained.


2018 ◽  
Vol 782 ◽  
pp. 78-83
Author(s):  
Hasnat Zamin ◽  
Takeshi Yabutsuka ◽  
Shigeomi Takai

Particles of calcium phosphate were precipitated by raising the temperature and the pH of simulated body fluid (SBF) named Apatite Nuclei (AN). AN and polyvinylidene fluoride (PVDF) composites thin films with different weight percentages of AN in PVDF were fabricated by solution casting technique, using doctor blade method. In order to assess the bioactivity, the thin films were soaked in simulated body fluid (SBF). It was found that the film containing 30 wt.% of AN in PVDF actively induced hydroxyapatite formation in 3 days soaking period in SBF.


2018 ◽  
Vol 47 (42) ◽  
pp. 14932-14937 ◽  
Author(s):  
Yi-Jing Li ◽  
Chao-Ying Fan ◽  
Jing-Ping Zhang ◽  
Xing-Long Wu

A novel PEO based polymer electrolyte prepared by the solution casting technique for use in all-solid-state lithium ion batteries.


2019 ◽  
Vol 962 ◽  
pp. 77-81
Author(s):  
B. Guruswamy ◽  
V. Ravindrachary ◽  
C. Shruthi ◽  
M. Mylarappa ◽  
G.O. Obaiah

The effect of Pd-TiO2 nanoparticle doping on structural, optical and thermal properties of the PVA polymer has been investigated using FTIR, UV-Visible, TGA and FESEM analysis. nanosized Pd-TiO2 particles were synthesized using standard method. Pure and Pd-TiO2/PVA nanocomposite films were prepared using solution casting technique. The FTIR study confirmed that the Pd-TiO2 nanoparticles interacts with the OH group of PVA polymer and forms the complex. The presence of these complexes affects the optical and thermal properties the composite. The change in the optical properties was studied using UV-Vis absorption method. The effect of doping on the thermal properties was studied using TGA method and the modified surface morphology using FESEM.


2016 ◽  
Vol 721 ◽  
pp. 13-17
Author(s):  
Juris Bitenieks ◽  
Remo Merijs Meri ◽  
Janis Zicans ◽  
Mārtiņš Kalniņš

Nanocomposite films from polyvinyl acetate (PVAc) dispersion and multi walled carbon nanotubes (MWCNTs) were prepared by solution casting technique. Stress-strain properties showed increase in elastic modulus and yield strength. Mechanical properties characterized by dynamic mechanical thermal analysis represented increase in storage modulus below glass transition temperature. Studied dielectrical properties of PVAc/MWCNT nanocomposites revealed formation of conductive MWCNT network in PVAc matrix.


Sign in / Sign up

Export Citation Format

Share Document