scholarly journals Unparalleled mitigation of membrane degradation in fuel cells via a counter-intuitive approach: suppression of H2O2 production at the hydrogen anode using a Ptskin–PtCo catalyst

2020 ◽  
Vol 8 (3) ◽  
pp. 1091-1094 ◽  
Author(s):  
Guoyu Shi ◽  
Donald A. Tryk ◽  
Toshio Iwataki ◽  
Hiroshi Yano ◽  
Makoto Uchida ◽  
...  

PtCo/CHT anode catalyst showed a large suppression of H2O2 generation, by ≥50% in comparison with commercial Pt/CB at practical potentials for H2 oxidation, resulting in greatly enhanced durability of the fuel cell by mitigating membrane degradation.

2021 ◽  
Vol 57 (80) ◽  
pp. 10415-10418
Author(s):  
Mengrui Zhang ◽  
Jianping Zhu ◽  
Bin Liu ◽  
Yongkang Hou ◽  
Chao Zhang ◽  
...  

Ultrafine Co6W6C nanoparticles were successfully synthesized, and this ternary carbide exhibit high catalytic activities for hydrazine oxidation reaction in a practical oxygen–hydrazine fuel cell.


2018 ◽  
Vol 71 (10) ◽  
pp. 781 ◽  
Author(s):  
Ciaran J. McDonnell-Worth ◽  
Douglas R. MacFarlane

This review introduces the concept of direct H2O2 fuel cells and discusses the merits of these systems in comparison with other ‘clean-energy’ fuels. Through electrochemical methods, H2O2 fuel can be generated from environmentally benign energy sources such as wind and solar. It also produces only water and oxygen when it is utilised in a direct H2O2 fuel cell, making it a fully reversible system. The electrochemical methods for H2O2 production are discussed here as well as the recent research aimed at increasing the efficiency and power of direct H2O2 fuel cells.


RSC Advances ◽  
2016 ◽  
Vol 6 (11) ◽  
pp. 9315-9319 ◽  
Author(s):  
Daping He ◽  
Yuanyang Rong ◽  
Mariolino Carta ◽  
Richard Malpass-Evans ◽  
Neil B. McKeown ◽  
...  

There remains a major materials challenge in maintaining the performance of platinum (Pt) anode catalysts in fuel cells due to corrosion and blocking of active sites.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5611
Author(s):  
Ambrož Kregar ◽  
Philipp Frühwirt ◽  
Daniel Ritzberger ◽  
Stefan Jakubek ◽  
Tomaž Katrašnik ◽  
...  

The chemical degradation of the perfluorinated sulfonic acid (PFSA) ion-exchange membrane as a result of an attack from a radical species, originating as a by-product of the oxygen reduction reaction, represents a significant limiting factor in a wider adoption of low-temperature proton exchange membrane fuel cells (LT-PEMFCs). The efficient mathematical modeling of these processes is therefore a crucial step in the further development of proton exchange membrane fuel cells. Starting with an extensive kinetic modeling framework, describing the whole range of chemical processes leading to the membrane degradation, we use the mathematical method of sensitivity analysis to systematically reduce the number of both chemical species and reactions needed to efficiently and accurately describe the chemical degradation of the membrane. The analysis suggests the elimination of chemical reactions among the radical species, which is supported by the physicochemical consideration of the modeled reactions, while the degradation of Nafion backbone can be significantly simplified by lumping several individual species concentrations. The resulting reduced model features only 12 species coupled by 8 chemical reactions, compared to 19 species coupled by 23 reactions in the original model. The time complexity of the model, analyzed on the basis of its stiffness, however, is not significantly improved in the process. Nevertheless, the significant reduction in the model system size and number of parameters represents an important step in the development of a computationally efficient coupled model of various fuel cell degradation processes. Additionally, the demonstrated application of sensitivity analysis method shows a great potential for further use in the optimization of models of operation and degradation of fuel cell components.


2020 ◽  
Vol 56 (42) ◽  
pp. 5669-5672
Author(s):  
Zhanna Tatus-Portnoy ◽  
Anna Kitayev ◽  
Thazhe Veettil Vineesh ◽  
Ervin Tal-Gutelmacher ◽  
Miles Page ◽  
...  

Herein, we report a Ru-rich anode catalyst for alkaline exchange membrane fuel cells. At 80 °C, a fuel cell with a RuPdIr/C anode and Ag based cathode attained a peak power density close to 1 W cm−2 with 0.2 mg cm−2 anode loading in comparison to 0.77 W cm−2 for the cell tested with the same metal loading of Pt.


Catalysts ◽  
2016 ◽  
Vol 7 (12) ◽  
pp. 8 ◽  
Author(s):  
Yoshiyuki Ogihara ◽  
Hiroshi Yano ◽  
Takahiro Matsumoto ◽  
Donald Tryk ◽  
Akihiro Iiyama ◽  
...  

2016 ◽  
Vol 09 (02) ◽  
pp. 1650025 ◽  
Author(s):  
Chien-Liang Lin ◽  
Shih-Chieh Hsu ◽  
Wei-Yu Ho

Sulfonated SiO2 was added on an anode catalyst layer to manufacture a hygroscopic electrode for self-humidifying proton exchange membrane fuel cells (PEMFCs). The inherent humidity of a proton exchange membrane (PEM) determines the electrical performance of PEMFCs. To maintain the high moisture content of the PEM, self-humidifying PEMFCs can use the water produced by the fuel cell reaction and, thus, do not require external humidification. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and water contact angle measurement tests were performed to characterize the structures and properties of sulfonated SiO2 and the related electrodes, and the electric current and voltage (I–V) performance curve tests for the fuel cells were conducted under differing gas humidification conditions. When 0.01[Formula: see text]mg/cm2 of sulfonated SiO2 was added, the electrical performance of the fuel cells (50[Formula: see text]C) increased 29% and 59% when the fuel cell reaction gases were humidified at 70[Formula: see text]C and 50[Formula: see text]C, respectively.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


Sign in / Sign up

Export Citation Format

Share Document