A Multimodal strategy of Fe3O4@ZIF-8/GOx@MnO2 hybrid nanozyme via TME modulation for tumor therapy

Nanoscale ◽  
2021 ◽  
Author(s):  
Yu Zhang ◽  
Yifeng Yang ◽  
Jinsheng Shi ◽  
Lili Wang

Weak acidity (6.5-6.9) and limited H2O2 level in tumor microenvironment (TME) usually impact therapeutic effect of chemodynamic therapy (CDT) for cancer. The specific TME promotes the formation of immunosuppressive microenvironment...

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Farias ◽  
A. Soto ◽  
F. Puttur ◽  
C. J. Goldin ◽  
S. Sosa ◽  
...  

AbstractBrucella lumazine synthase (BLS) is a homodecameric protein that activates dendritic cells via toll like receptor 4, inducing the secretion of pro-inflammatory cytokines and chemokines. We have previously shown that BLS has a therapeutic effect in B16 melanoma-bearing mice only when administered at early stages of tumor growth. In this work, we study the mechanisms underlying the therapeutic effect of BLS, by analyzing the tumor microenvironment. Administration of BLS at early stages of tumor growth induces high levels of serum IFN-γ, as well as an increment of hematopoietic immune cells within the tumor. Moreover, BLS-treatment increases the ratio of effector to regulatory cells. However, all treated mice eventually succumb to the tumors. Therefore, we combined BLS administration with anti-PD-1 treatment. Combined treatment increases the outcome of both monotherapies. In conclusion, we show that the absence of the therapeutic effect at late stages of tumor growth correlates with low levels of serum IFN-γ and lower infiltration of immune cells in the tumor, both of which are essential to delay tumor growth. Furthermore, the combined treatment of BLS and PD-1 blockade shows that BLS could be exploited as an essential immunomodulator in combination therapy with an immune checkpoint blockade to treat skin cancer.


Author(s):  
Endong Zhang ◽  
Zicheng Zuo ◽  
Wen Yu ◽  
Hao Zhao ◽  
Shengpeng Xia ◽  
...  

Carbon monoxide (CO) gas therapy has grown to be an emerging tumor therapy strategy to avoid low treatment efficiency of photodynamic therapy (PDT) caused by the hypoxia tumor microenvironment. However,...


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi204-vi204
Author(s):  
Rohit Rao ◽  
Rong Han ◽  
Sean Ogurek ◽  
Lai Man Wu ◽  
Liguo Zhang ◽  
...  

Abstract Tumor-associated macrophages/microglia (TAMs) are prominent microenvironment components in human glioblastoma (GBM) that are potential targets for anti-tumor therapy. However, TAM depletion by CSF1R inhibition showed mixed results in clinical trials. We hypothesized that GBM subtype-specific tumor microenvironment convey distinct sensitivities to TAM targeting. We generated syngeneic PDGFB-driven and RAS-driven GBM models that resemble proneural-like and mesenchymal-like gliomas, and determined the effect of TAM targeting by CSF1R inhibitor PLX3397 on glioma growth and progression. We also investigated the co-targeting of TAMs and angiogenesis on PLX3397-resistant RAS-driven GBM. Using single-cell transcriptomic profiling, we further explored differences in tumor microenvironment compositions and functions between the proneural-like and mesenchymal-like glioma models. We found that the growth of PDGFB-driven tumors was markedly inhibited by PLX3397. In contrast, depletion of TAMs at the early phase accelerated RAS-driven tumor growth and had no effects on other proneural and mesenchymal human GBM models. In addition, PLX3397-resistant RAS-driven tumors did not respond to PI3K signaling inhibition. Single-cell transcriptomic profiling revealed that PDGFB-driven gliomas induced expansion and activation of pro-tumor microglia, whereas mesenchymal RAS-driven gliomas elicited TAMs enriched in pro-inflammatory and angiogenic signaling. Co-targeting of TAMs and angiogenesis decreased cell proliferation and tumor mass in RAS-driven gliomas. Our work identifies functionally distinct TAM subpopulations in the growth of different glioma subtypes. Notably, we uncover a potential responsiveness of resistant mesenchymal-like gliomas to combined anti-angiogenic therapy and CSF1R inhibition. These data highlight the importance of microenvironment landscape characterization to optimally stratify glioma patients for TAM-targeted therapy.


2021 ◽  
Author(s):  
Rohit Rao ◽  
Rong Han ◽  
Sean Ogurek ◽  
Chengbin Xue ◽  
Lai Man Wu ◽  
...  

Abstract Background Tumor-associated macrophages/microglia (TAMs) are prominent microenvironment components in human glioblastoma (GBM) that are potential targets for anti-tumor therapy. However, TAM depletion by CSF1R inhibition showed mixed results in clinical trials. We hypothesized that GBM subtype-specific tumor microenvironment convey distinct sensitivities to TAM targeting. Methods We generated syngeneic PDGFB-driven and RAS-driven GBM models that resemble proneural-like and mesenchymal-like gliomas, and determined the effect of TAM targeting by CSF1R inhibitor PLX3397 on glioma growth. We also investigated the co-targeting of TAMs and angiogenesis on PLX3397-resistant RAS-driven GBM. Using single-cell transcriptomic profiling, we further explored differences in tumor microenvironment cellular compositions and functions in PDGFB- and RAS-driven gliomas. Results We found that growth of PDGFB-driven tumors was markedly inhibited by PLX3397. In contrast, depletion of TAMs at the early phase accelerated RAS-driven tumor growth and had no effects on other proneural and mesenchymal GBM models. In addition, PLX3397-resistant RAS-driven tumors did not respond to PI3K signaling inhibition. Single-cell transcriptomic profiling revealed that PDGFB-driven gliomas induced expansion and activation of pro-tumor microglia, whereas TAMs in mesenchymal RAS-driven GBM were enriched in pro-inflammatory and angiogenic signaling. Co-targeting of TAMs and angiogenesis decreased cell proliferation and changed the morphology of RAS-driven gliomas. Conclusions Our work identify functionally distinct TAM subpopulations in the growth of different glioma subtypes. Notably, we uncover a potential responsiveness of resistant mesenchymal-like gliomas to combined anti-angiogenic therapy and CSF1R inhibition. These data highlight the importance of characterization of the microenvironment landscape in order to optimally stratify patients for TAM-targeted therapy.


RSC Advances ◽  
2020 ◽  
Vol 10 (37) ◽  
pp. 22091-22101
Author(s):  
Kaiyu Wang ◽  
Zhiyuan Cai ◽  
Rong Fan ◽  
Qian Yang ◽  
Tao Zhu ◽  
...  

Endogenous hydrogen peroxide was utilized to control the release of agents for better tumor therapeutic effect and safety.


2020 ◽  
Author(s):  
Mei-Zhen Zou ◽  
Wen-Long Liu ◽  
Han-Shi Chen ◽  
Xue-Feng Bai ◽  
Fan Gao ◽  
...  

Abstract The hypoxic tumor microenvironment is characterized by disordered vasculature and rapid proliferation of tumors, resulting from tumor invasion, progression and metastasis. The hypoxic conditions restrict efficiency of tumor therapies, such as chemotherapy, radiotherapy, phototherapy and immunotherapy, leading to serious results of tumor recurrence and high mortality. Recently, research has concentrated on developing functional nanomaterials to treat hypoxic tumors. In this review, we categorize such nanomaterials into (i) nanomaterials that elevate oxygen levels in tumors for enhanced oxygen-dependent tumor therapy and (ii) nanomaterials with diminished oxygen dependence for hypoxic tumor therapy. To elevate oxygen levels in tumors, oxygen-carrying nanomaterials, oxygen-generating nanomaterials and oxygen-economizing nanomaterials can be used. To diminish oxygen dependence of nanomaterials for hypoxic tumor therapy, therapeutic gas-generating nanomaterials and radical-generating nanomaterials can be used. The biocompatibility and therapeutic efficacy of these nanomaterials are discussed.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A38.2-A39
Author(s):  
E Martinenaite ◽  
M Aaboe Joergensen ◽  
RE Johansson Mortensen ◽  
S Munir Ahmad ◽  
SE Weis-Banke ◽  
...  

BackgroundCancer progression is associated with an increased immune suppression at the tumor site. Arginase-1 is an enzyme well-known for its involvement in metabolic immune regulation. At the tumor site, arginase-1 acts by reducing availability of L-arginine to the infiltrating immune cells thus reducing T cell functionality and proliferation. While arginase-1 is expressed by some tumor cells, it has also been shown to be produced by immune inhibitory myeloid cells, such as myeloid derived suppressor cells (MDSCs), tumor associated macrophages (TAMs) and is associated with poor prognosis. Previously, we demonstrated that spontaneous CD4+ and CD8+ T-cell immune responses against arginase-derived, HLA-restricted peptides can be found in both cancer patients and healthy individuals (Martinenaite et al, 2018, DOI: 10.1080/2162402X.2017.1404215). These T cells are present in the memory T cell compartment, and that they are activated in arginase-1 inducing conditions, such as presence of TH2 cytokines IL-4 or IL-13 in vitro (Martinenaite et al, 2019, DOI: 10.1038/s41423-019-0231-3 and DOI: 10.1007/s00262-019-02425-6).Methods and ResultsIn order to explore if arginase-1-specific T cells have a potential role in modulation of immune homeostasis, human arginase-1-specific memory T cells were isolated and expanded for functional characterization. We show that arginase-1-specific T cells specifically recognize arginase-1 expressing cells, such as mRNA transfected autologous dendritic cells (DCs) and B cells as well as M2 polarized macrophages in vitro. In addition, activated arginase-1-specific T cells produce pro-inflammatory cytokines IFNγ and TNFα. Secretion of TH1 cytokines by these T cells suggests potential role as potent immune modulators in the tumor microenvironment, since many arginase-1 expressing myeloid cells are not terminally differentiated and they can be re-polarized to an immunostimulatory, M1-like phenotype. We also observed that targeting of M2-polarized arginase-1 expressing monocytic leukemia cell line THP-1 with arginase-1-specific CD4+ T cells induces upregulation of PD-L1 on the THP-1 cells. Furthermore, we demonstrate that an arginase-1-derive peptide vaccine has a therapeutic effect in syngeneic mouse tumor models (B16 and MC38), both as monotherapy and in combination with anti-PD-1 treatment. The therapeutic effect was associated with increased immune infiltration in the peptide vaccinated mice compared to the control.ConclusionsOur study provides evidence that immune modulatory vaccination targeting arginase-1 is an intriguing way of targeting the immune suppressive microenvironment.Disclosure InformationE. Martinenaite: A. Employment (full or part-time); Significant; IO Biotech. M. Aaboe Joergensen: None. R.E. Johansson Mortensen: None. S. Munir Ahmad: None. S.E. Weis-Banke: None. M. Orebo Holmström: None. A. Wakatsuki Pedersen: A. Employment (full or part-time); Significant; IO Biotech. Ö. Met: None. I.M. Svane: F. Consultant/Advisory Board; Significant; IO Biotech. M. Hald Andersen: A. Employment (full or part-time); Significant; IO Biotech.


2019 ◽  
Vol 20 (8) ◽  
pp. 1874 ◽  
Author(s):  
Laura Bonanno ◽  
Elisabetta Zulato ◽  
Alberto Pavan ◽  
Ilaria Attili ◽  
Giulia Pasello ◽  
...  

Liver kinase B1 (LKB1) is a tumor suppressor gene whose inactivation is frequent in different tumor types, especially in lung adenocarcinoma (about 30% of cases). LKB1 has an essential role in the control of cellular redox homeostasis by regulating ROS production and detoxification. Loss of LKB1 makes the tumor cell more sensitive to oxidative stress and consequently to stress-inducing treatments, such as chemotherapy and radiotherapy. LKB1 loss triggers complex changes in tumor microenvironment, supporting a role in the regulation of angiogenesis and suggesting a potential role in the response to anti-angiogenic treatment. On the other hand, LKB1 deficiency can promote an immunosuppressive microenvironment and may be involved in primary resistance to anti-PD-1/anti-PD-L1, as it has been reported in lung cancer. The aim of this review is to discuss interactions of LKB1 with the tumor microenvironment and the potential applications of this knowledge in predicting response to treatment in lung cancer.


2019 ◽  
Vol 20 (2) ◽  
pp. 273 ◽  
Author(s):  
Michaela Jung ◽  
Christina Mertens ◽  
Elisa Tomat ◽  
Bernhard Brüne

Iron is an essential element for virtually all organisms. On the one hand, it facilitates cell proliferation and growth. On the other hand, iron may be detrimental due to its redox abilities, thereby contributing to free radical formation, which in turn may provoke oxidative stress and DNA damage. Iron also plays a crucial role in tumor progression and metastasis due to its major function in tumor cell survival and reprogramming of the tumor microenvironment. Therefore, pathways of iron acquisition, export, and storage are often perturbed in cancers, suggesting that targeting iron metabolic pathways might represent opportunities towards innovative approaches in cancer treatment. Recent evidence points to a crucial role of tumor-associated macrophages (TAMs) as a source of iron within the tumor microenvironment, implying that specifically targeting the TAM iron pool might add to the efficacy of tumor therapy. Here, we provide a brief summary of tumor cell iron metabolism and updated molecular mechanisms that regulate cellular and systemic iron homeostasis with regard to the development of cancer. Since iron adds to shaping major hallmarks of cancer, we emphasize innovative therapeutic strategies to address the iron pool of tumor cells or cells of the tumor microenvironment for the treatment of cancer.


2020 ◽  
Vol 8 (1) ◽  
pp. 353-369 ◽  
Author(s):  
Mengmeng Hou ◽  
Weiwei Liu ◽  
Lei Zhang ◽  
Leiyang Zhang ◽  
Zhigang Xu ◽  
...  

In spite of widespread applications of nano-photosensitizers, poor tumor penetration and severe hypoxia in the tumor microenvironment (TME) always result in an undesirable therapeutic outcome of photodynamic therapy (PDT).


Sign in / Sign up

Export Citation Format

Share Document