tumor associated macrophages
Recently Published Documents


TOTAL DOCUMENTS

1954
(FIVE YEARS 803)

H-INDEX

95
(FIVE YEARS 24)

2022 ◽  
Vol 146 ◽  
pp. 112588
Author(s):  
Ali Baradaran ◽  
Zahra Asadzadeh ◽  
Nima Hemmat ◽  
Amir Baghbanzadeh ◽  
Mahdi Abdoli Shadbad ◽  
...  

2022 ◽  
Vol 11 ◽  
Author(s):  
Jing Xu ◽  
Xin-Yuan Liu ◽  
Qi Zhang ◽  
Hua Liu ◽  
Peng Zhang ◽  
...  

Long non-coding RNAs (ncRNAs), which do not encode proteins, regulate cell proliferation, tumor angiogenesis, and metastasis and are closely associated with the development, progression, and metastasis of many cancers. Tumor-associated macrophages (TAMs) in the tumor microenvironment play an important role in cancer progression. The Hippo signaling pathway regulates cell proliferation and apoptosis, maintains tissue and organ size, and homeostasis of the internal environment of organisms. Abnormal expression of Yes-associated protein (YAP), the Hippo signaling pathway key component, is widely observed in various malignancies. Further, TAM, lncRNA, and YAP are currently valuable targets for cancer immunotherapy. In this review, we have logically summarized recent studies, clarified the close association between the three factors and tumorigenesis, and analyzed the outlook of tumor immunotherapy.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 226
Author(s):  
Konstantinos Arvanitakis ◽  
Triantafyllia Koletsa ◽  
Ioannis Mitroulis ◽  
Georgios Germanidis

Hepatocellular carcinoma (HCC) constitutes a major health burden globally, and it is caused by intrinsic genetic mutations acting in concert with a multitude of epigenetic and extrinsic risk factors. Cancer induces myelopoiesis in the bone marrow, as well as the mobilization of hematopoietic stem and progenitor cells, which reside in the spleen. Monocytes produced in the bone marrow and the spleen further infiltrate tumors, where they differentiate into tumor-associated macrophages (TAMs). The relationship between chronic inflammation and hepatocarcinogenesis has been thoroughly investigated over the past decade; however, several aspects of the role of TAMs in HCC development are yet to be determined. In response to certain stimuli and signaling, monocytes differentiate into macrophages with antitumor properties, which are classified as M1-like. On the other hand, under different stimuli and signaling, the polarization of macrophages shifts towards an M2-like phenotype with a tumor promoting capacity. M2-like macrophages drive tumor growth both directly and indirectly, via the suppression of cytotoxic cell populations, including CD8+ T cells and NK cells. The tumor microenvironment affects the response to immunotherapies. Therefore, an enhanced understanding of its immunobiology is essential for the development of next-generation immunotherapies. The utilization of various monocyte-centered anticancer treatment modalities has been under clinical investigation, selectively targeting and modulating the processes of monocyte recruitment, activation and migration. This review summarizes the current evidence on the role of TAMs in HCC pathogenesis and progression, as well as in their potential involvement in tumor therapy, shedding light on emerging anticancer treatment methods targeting monocytes.


BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Shuo Wang ◽  
Haiyang Jiang ◽  
Caiwei Zheng ◽  
Ming Gu ◽  
Xinyu Zheng

Abstract Introduction Breast microcalcifications is a characteristic feature in diagnostic imaging and a prognostic factor of breast cancer. However, the underlying mechanisms of breast microcalcifications formation are not fully understood. Previous studies have shown that upregulation of bone morphogenetic protein 2 (BMP-2) is associated with the occurrence of microcalcifications and tumor-associated macrophages (TAMs) in the tumor microenvironment can secrete BMP-2. The aim of this study is to elucidate the role of secretion of BMP-2 by TAMs in promoting microcalcifications of breast cancer through immunohistochemical staining and co-culturing of breast cancer cells with TAMs. Methods A total of 272 patients diagnosed with primary invasive breast cancer from January 2010 to January 2012 in the First Hospital of China Medical University were included in this study. Immunohistochemical staining of CD68 (marker of entire macrophages), CD168 (marker of the M2-like macrophages) and BMP-2 were performed on 4-μm tissue microarray (TMA) sections. Following induction, THP-1 cells were differentiated to M2-like TAMs and were then co-cultured with breast cancer cells (MCF-7). Calcifications and BMP-2 expression were analyzed by Alizarin Red S staining and western blot, respectively. Results Immunohistochemical analysis showed that the expression of CD168 was significantly increased in tissues with microcalcifications and was correlated with the expression of BMP-2 and poor prognosis. The formation of cellular microcalcifications and BMP-2 expression were significantly increased in MCF-7 cells co-cultured with TAMs compared with MCF-7 cells alone. Conclusions These findings support the hypothesis that TAMs secrete BMP-2 to induce microcalcifications in breast cancer cells and influence prognosis via multiple pathways including BMP-2 and its downstream factors.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 250
Author(s):  
Sophiya Siddiqui ◽  
Rainer Glauben

The tumor microenvironment (TME) comprises various cell types, soluble factors, viz, metabolites or cytokines, which together play in promoting tumor metastasis. Tumor infiltrating immune cells play an important role against cancer, and metabolic switching in immune cells has been shown to affect activation, differentiation, and polarization from tumor suppressive into immune suppressive phenotypes. Macrophages represent one of the major immune infiltrates into TME. Blood monocyte-derived macrophages and myeloid derived suppressor cells (MDSCs) infiltrating into the TME potentiate hostile tumor progression by polarizing into immunosuppressive tumor-associated macrophages (TAMs). Recent studies in the field of immunometabolism focus on metabolic reprogramming at the TME in polarizing tumor-associated macrophages (TAMs). Lipid droplets (LD), detected in almost every eukaryotic cell type, represent the major source for intra-cellular fatty acids. Previously, LDs were mainly described as storage sites for fatty acids. However, LDs are now recognized to play an integral role in cellular signaling and consequently in inflammation and metabolism-mediated phenotypical changes in immune cells. In recent years, the role of LD dependent metabolism in macrophage functionality and phenotype has been being investigated. In this review article, we discuss fatty acids stored in LDs, their role in modulating metabolism of tumor-infiltrating immune cells and, therefore, in shaping the cancer progression.


Sign in / Sign up

Export Citation Format

Share Document