scholarly journals Kinetics of thiamin cleavage by sulphite

1969 ◽  
Vol 113 (4) ◽  
pp. 611-615 ◽  
Author(s):  
J. Leichter ◽  
M. A. Joslyn

Results are presented on the rate of thiamin cleavage by sulphite in aqueous solutions as affected by temperature (20–70°), pH(2·5–7·0), and variation of the concentration of either thiamin (1–20μm) or sulphite (10–5000μm as sulphur dioxide). Plots of the logarithm of percentage of residual thiamin against time were found to be linear and cleavage thus was first-order with respect to thiamin. At pH5 the rate was also found to be proportional to the sulphite concentration. In the pH region 2·5–7·0 at 25° the rate constant was 50m−1hr.−1 at pH5·5–6·0, and decreased at higher or lower pH values. The rate of reaction increased between 20° and 70°, indicating a heat of activation of 13·6kcal./mole.

1996 ◽  
Vol 50 (11) ◽  
pp. 1352-1359 ◽  
Author(s):  
Ping Chiang ◽  
Kuang-Pang Li ◽  
Tong-Ming Hseu

An idealized model for the kinetics of benzo[ a]pyrene (BaP) metabolism is established. As observed from experimental results, the BaP transfer from microcrystals to the cell membrane is definitely a first-order process. The rate constant of this process is signified as k1. We describe the surface–midplane exchange as reversible and use rate constants k2 and k3 to describe the inward and outward diffusions, respectively. The metabolism is identified as an irreversible reaction with a rate constant k4. If k2 and k3 are assumed to be fast and not rate determining, the effect of the metabolism rate, k4, on the number density of BaP in the midplane of the microsomal membrane, m3, can be estimated. If the metabolism rate is faster than or comparable to the distribution rates, k2 and k3, the BaP concentration in the membrane midplane, m3, will quickly be dissipated. But if k4 is extremely small, m3 will reach a plateau. Under conditions when k2 and k3 also play significant roles in determining the overall rate, more complicated patterns of m3 are expected.


1966 ◽  
Vol 19 (8) ◽  
pp. 1365 ◽  
Author(s):  
RH Smith ◽  
IR Wilson

Initial rates of reaction for the above oxidation have been measured by a stopped-flow conductance method. Between pH 2 and 3.6, the initial rate of reaction, R, is given by the expression R{[HSO5-]+[SCN-]} = {kb+kc[H+]}[HSO5-]0[SCN-]20+ka[H+]-1[HSO5]20[SCN-]0 As pH increases, there is a transition to a pH-independent rate, first order in each thiocyanate and peroxomonosulphate concentrations.


1992 ◽  
Vol 45 (12) ◽  
pp. 1943 ◽  
Author(s):  
SJ Dunne ◽  
RC Burns ◽  
GA Lawrance

Oxidation of Ni2+,aq, by S2O82- to nickel(IV) in the presence of molybdate ion, as in the analogous manganese system, involves the formation of the soluble heteropolymolybdate anion [MMogO32]2- (M = Ni, Mn ). The nickel(IV) product crystallized as (NH4)6 [NiMogO32].6H2O from the reaction mixture in the rhombohedra1 space group R3, a 15.922(1), c 12.406(1) � ; the structure was determined by X-ray diffraction methods, and refined to a residual of 0.025 for 1741 independent 'observed' reflections. The kinetics of the oxidation were examined at 80 C over the pH range 3.0-5.2; a linear dependence on [S2O82-] and a non-linear dependence on l/[H+] were observed. The influence of variation of the Ni/Mo ratio between 1:10 and 1:25 on the observed rate constant was very small at pH 4.5, a result supporting the view that the precursor exists as the known [NiMo6O24H6]4- or a close analogue in solution. The pH dependence of the observed rate constant at a fixed oxidant concentration (0.025 mol dm-3) fits dequately to the expression kobs = kH [H+]/(Ka+[H+]) where kH = 0.0013 dm3 mol-1 s-1 and Ka = 4-0x10-5. The first-order dependence on peroxodisulfate subsequently yields a second-order rate constant of 0.042 dm3 mol-1 s-1. Under analogous conditions, oxidation of manganese(II) occurs eightfold more slowly than oxidation of nickel(II), whereas oxidation of manganese(II) by peroxomonosulfuric acid is 16-fold faster than oxidation by peroxodisulfate under similar conditions.


2010 ◽  
Vol 2 (2) ◽  
pp. 107-112
Author(s):  
Nuryono Nuryono ◽  
Narsito Narsito

In this research, treatment of diatomaceous earth, Sangiran, Central Java using hydrogen chloride (HCl) and sulfuric acid (H2SO4) on kinetics of Cd(II) adsorption in aqueous solution has been carried out. The work was conducted by mixing an amount of grounded diatomaceous earth (200 mesh in size) with HCl or H2SO4 solution in various concentrations for two hours at temperature range of 100 - 150oC. The mixture was then filtered and washed with water until the filtrate pH is approximately 7 and then the residue was dried for four hours at a temperature of 70oC. The product was used as an adsorbent to adsorb Cd(II) in aqueous solution with various concentrations. The Cd(II) adsorbed was determined by analyzing the rest of Cd(II) in the solution using atomic absorption spectrophotometry. The effect of treatment was evaluated from kinetic parameter of adsorption rate constant calculated based on the simple kinetic model. Results showed  that before equilibrium condition reached, adsorpstion of Cd(II) occurred through two steps, i.e. a step tends to follow a reaction of irreversible first order  (step I) followed by reaction of reversible first order (step II). Treatment with acids, either hydrogen chloride or sulfuric acid, decreased adsorption rate constant for the step I from 15.2/min to a range of 6.4 - 9.4/min.  However, increasing concentration of acid (in a range of concentration investigated) did not give significant and constant change of adsorption rate constant. For step II process,  adsorption involved physical interaction with the sufficient low adsorption energy (in a range of 311.3 - 1001 J/mol).     Keywords: adsorption, cdmium, diatomaceous earth, kinetics.


1990 ◽  
Vol 68 (2) ◽  
pp. 476-479
Author(s):  
Donald C. Wigfield ◽  
Douglas M. Goltz

The kinetics of the reconstitution reaction of apotyrosinase with copper (II) ions are reported. The reaction is pseudo first order with respect to apoenzyme and the values of these pseudo first order rate constants are reported as a function of copper (II) concentration. Two copper ions bind to apoenzyme, and if the second one is rate limiting, the kinetically relevant copper concentration is the copper originally added minus the amount used in binding the first copper ion to enzyme. This modified copper concentration is linearly related to the magnitude of the pseudo first order rate constant, up to a copper concentration of 1.25 × 10−4 M (10-fold excess), giving a second order rate constant of 7.67 × 102 ± 0.93 × 102 M−1∙s−1.Key words: apotyrosinase, copper, tyrosinase.


1974 ◽  
Vol 29 (1-2) ◽  
pp. 86-88b ◽  
Author(s):  
Burkhard O. Wagner ◽  
Herbert Klever ◽  
Dietrich Schulte-Frohlinde

To study the reaction of the solvated electron with 5-bromouracil an aqueous solution has been examined by conductometric pulse radiolysis at pH values between 4.68 and 8.74. Alcohol was added to scavenge the hydrogen atom and the hydroxyl radical. G(Br—) = (2.64 ± 0.08)/100 eV was found to be independent of the pH. The mobility of the bromouracil mono-anion was measured to be (2.7 ± 0.2) 10-4 cm2 V-1 s-1 at 20°C, and the rate constant of reaction (3b) was determined to be k(H+ BrUr-) = (2.3 ± 0.2) 1010 I mole-1 s-1*.


1971 ◽  
Vol 122 (1) ◽  
pp. 79-87 ◽  
Author(s):  
Charles Phelps ◽  
Eraldo Antonini ◽  
Maurizio Brunori

1. The equilibrium and kinetics of cyanide binding to ferroperoxidase were investigated. At pH9.1 the equilibrium and kinetic measurements agree closely and disclose a single process with an affinity constant of 1.1×103m@!-1 and combination and dissociation velocity constants of 29m-1·s-1 and 2.5×10-2s-1 respectively. 2. At pH values below 8 the affinity constant falls until at pH6.0 the ferroperoxidase·cyanide complex is no longer formed. This is shown to be associated with the formation of ferriperoxidase·cyanide complex in the mixture even in the presence of excess of sodium dithionite. 3. Rapid-pH-jump experiments show a fast pseudo-first-order interconversion between ferroperoxidase·cyanide complex at pH9.1 and ferriperoxidase·cyanide complex at pH6.0. 4. The kinetics of binding of cyanide to dithionite-reduced peroxidase at pH6.0 are complicated and radically different from those observed at pH9.1. 5. Above pH8 the change of affinity constant with pH is consistent with the undissociated species, HCN, being bound by the ferroperoxidase. The enthalpy for this process measured both by equilibrium and kinetic methods is about -8kcal/mol. 6. The binding of cyanide to reconstituted peroxidases, proto, meso and deutero, was investigated. 7. The results are discussed in relation to known data on cyanide binding to other haemoproteins.


1963 ◽  
Vol 16 (6) ◽  
pp. 927 ◽  
Author(s):  
NS Bayliss ◽  
DW Watts

The kinetics of the decomposition of aqueous solutions of sulphuric and perchloric acids containing sodium nitrite have been investigated at a number of temperatures. The technique involved flushing the decomposing solutions with dry nitrogen to remove the gaseous products. A first-order dependence of decomposition rate on "analytical nitrite" was found, the rate constants being dependent on the solvent acid composition.


1969 ◽  
Vol 114 (4) ◽  
pp. 719-724 ◽  
Author(s):  
Charles Phelps ◽  
Eraldo Antonini

1. Static titrations reveal an exact stoicheiometry between various haem derivatives and apoperoxidase prepared from one isoenzyme of the horseradish enzyme. 2. Carbon monoxide–protohaem reacts rapidly with apoperoxidase and the kinetics can be accounted for by a mechanism already applied to the reaction of carbon monoxide–haem derivatives with apomyoglobin and apohaemoglobin. 3. According to this mechanism a complex is formed first whose combination and dissociation velocity constants are 5×108m−1sec.−1 and 103sec.−1 at pH9·1 and 20°. The complex is converted into carbon monoxide–haemoprotein in a first-order process with a rate constant of 235sec.−1 for peroxidase and 364sec.−1 for myoglobin at pH9·1 and 20°. 4. The effects of pH and temperature were examined. The activation energy for the process of complex-isomerization is about 13kcal./mole. 5. The similarity in the kinetics of the reactions of carbon monoxide–haem with apoperoxidase and with apomyoglobin suggests structural similarities at the haem-binding sites of the two proteins.


The formation of 1-butene polysulphone from mixtures of liquid sulphur dioxide and 1-butene has been investigated dilatometrically at 25° C. Photochemical and silver nitrate initiation have been used, most of the work being carried out in mixtures containing an excess of sulphur dioxide. There is a discrepancy, in the case of photochemical initiation, between the molecular weight as estimated from the intrinsic viscosity of the polymer, and that deter­mined from the rate of reaction and rate of absorption of light. This discrepancy is ascribed to an inefficient primary process. The variation of rate with initiator, monomer and retarder concentrations has been investigated. The initiator exponent has a value intermediate between 0.5 and 1.0, indicating the occurrence of at least two termination processes. Kinetic expressions have been deduced for various possible termination mechanisms, and. in order to obtain agreement with experiment it is necessary to assume that the propagation process involves the addition to the growing chain of a 1:1 molecular complex of 1-butene and sulphur dioxide.


Sign in / Sign up

Export Citation Format

Share Document