scholarly journals EFFECT OF DIATOMEAOUS EARTH TREATMENT USING HYDROGEN CHLORIDE AND SULFURIC ACID ON KINETICS OF CADMIUM(II) ADSORPTION

2010 ◽  
Vol 2 (2) ◽  
pp. 107-112
Author(s):  
Nuryono Nuryono ◽  
Narsito Narsito

In this research, treatment of diatomaceous earth, Sangiran, Central Java using hydrogen chloride (HCl) and sulfuric acid (H2SO4) on kinetics of Cd(II) adsorption in aqueous solution has been carried out. The work was conducted by mixing an amount of grounded diatomaceous earth (200 mesh in size) with HCl or H2SO4 solution in various concentrations for two hours at temperature range of 100 - 150oC. The mixture was then filtered and washed with water until the filtrate pH is approximately 7 and then the residue was dried for four hours at a temperature of 70oC. The product was used as an adsorbent to adsorb Cd(II) in aqueous solution with various concentrations. The Cd(II) adsorbed was determined by analyzing the rest of Cd(II) in the solution using atomic absorption spectrophotometry. The effect of treatment was evaluated from kinetic parameter of adsorption rate constant calculated based on the simple kinetic model. Results showed  that before equilibrium condition reached, adsorpstion of Cd(II) occurred through two steps, i.e. a step tends to follow a reaction of irreversible first order  (step I) followed by reaction of reversible first order (step II). Treatment with acids, either hydrogen chloride or sulfuric acid, decreased adsorption rate constant for the step I from 15.2/min to a range of 6.4 - 9.4/min.  However, increasing concentration of acid (in a range of concentration investigated) did not give significant and constant change of adsorption rate constant. For step II process,  adsorption involved physical interaction with the sufficient low adsorption energy (in a range of 311.3 - 1001 J/mol).     Keywords: adsorption, cdmium, diatomaceous earth, kinetics.

2010 ◽  
Vol 3 (1) ◽  
pp. 32-38
Author(s):  
Nuryono Nuryono ◽  
V.V.H. Susanti ◽  
Narsito Narsito

In this research, the effect of Sangiran diatomaceous earth pre-treatment with sulfuric acid (H2SO4) and hydrochloric acid (HCl) on the kinetics of adsorption for Cr(III) in aqueous solution has been studied. The research has been carried out by mixing an amount of diatomeaeous earth with HCl or H2SO4 in various concentrations for two hours at temperature of 150 - 200°C. The mixture was washed with water until neutral, and the residue was dried at 70°C for four hours. The result then was used as adsorbent. Adsorption was carried out by mixing an amount of adsorbent with Cr(III) solution in various contact times. Ion adsorbed was determined by analyzing filtrate using atomic absorption spectrophotometry. The effect of pre-treatment on adsorption kinetics was evaluated based on kinetic parameters, i.e. constant of adsorption rate by using Langmuir-Hinshelwood kinetics and using two-process kinetics (fast and slow processes). Adsorption kinetics calculated using LH equation gave negative value for adsorption rate constant of zero order (k0). On the other words, the LH kinetics might not be applied for adsorption of Cr(III) to diatomaceous earth adsorbent. Results of kinetics study approached using two processes (fast and slow) showed that adsorption of Cr(III) occurred in two processes with rate constant of fast adsorption, kc, 0.041/min, rate constant of slow adsorption, kl, 0.0089/min, and of slow desorption, k'l, 0.089/menit. Pre-treatment with HCl up to 10 M decreased either kc, kl or k'l, while pre-treatment with H2SO4 1M increased kc to 0.061/min, decreased kl to 0.00424 and k'l to 0.0139/min. On pre-treatment with H2SO4 higher than 6 M significantly decreased three constants above. Based on the Gibbs energy change (4.31 - 6.79 kJ/mole) showed that adsorption involved physical interaction.   Keywords: adsorption, chromium, diatomaceous earth, kinetics, Langmuir-Hinshelwood


2021 ◽  
Vol 316 ◽  
pp. 170-174
Author(s):  
Elena G. Filatova ◽  
Yury N. Pozhidaev

Adsorption isotherms of Ni (II) and Cu (II) ions by alumino-silicates, modified with N, N'-bis (3-triethoxysilylpropyl) thiocarbamide (BTM-3), and HCl, were obtained. The adsorption kinetics of heavy metal ions is studied, using the kinetic pseudo-first and pseudo-second order models. It is shown that, when alumino-silicates are modified, the rate and energy of adsorption increase. It is established that the kinetics of the adsorption of the studied ions is best described by a pseudo-second order model. The maximum value of the adsorption rate constant of 33.7∙10-5 g/ (mmol min) corresponds to nickel (II) ions for alumino-silicates, modified with HCl. The maximum value of the adsorption rate constant value of 2.91∙10-5 g/ (mmol min) for alumino-silicates, modified with BTM-3, corresponds to Cu (II) ions.


1985 ◽  
Vol 40 (4) ◽  
pp. 368-372 ◽  
Author(s):  
H. D. Försterling ◽  
H. J. Lamberz ◽  
H. Schreiber

The reaction of Ce3+ with BrO2 in sulfuric acid solution (which is the starting step in the inorganic reaction subset of the Belousov-Zhabotinsky-reaction) is followed spectroscopically in a reaction mixture containing BrO2 at constant concentration. From first order kinetics (Br02 in excess) the rate constant for this reaction is evaluated.


2000 ◽  
Vol 65 (10) ◽  
pp. 709-713 ◽  
Author(s):  
Slavica Blagojevic ◽  
Natasa Pejic ◽  
Slobodan Anic ◽  
Ljiljana Kolar-Anic

The kinetics of the Belousov-Zhabotinsky (BZ) oscillatory reaction was analyzed. With this aim, the tune evolution of a reactionmixture composedof malonic acid, bromate, sulfuric acid and cerium(III) was studied at 298 K. Pseudo-first order kinetics with respect to malonic acid as the species undergoing decomposition with a corresponding rate constant, k = 7.5x10-3 min-1, was found.


2011 ◽  
Vol 90-93 ◽  
pp. 2925-2928 ◽  
Author(s):  
Lei Yuan ◽  
Ji Min Shen ◽  
Zhong Lin Chen

The kinetics of pumice for decomposition of p-chloronitrobenzene (pCNB) in aqueous solution were investigate. The experiment result indicated that ozonation alone and pumice-catalyzed ozonation of trace pCNB in aqueous solution followed the Pseudo-first-order kinetic model at the reaction temperature of 296 K and the initial pH of 6.86. The rate constant of pumice-catalyzed ozonation increase 149% compared with ozonation alone. In two processes mentioned above, the rate constants of degradation of pCNB were found to decrease with increasing of tert-butyl alcohol. The rate constant of ozonation alone appeared to be decreased 73%, respectively, decreasing 194% in the process of pumice-catalyzed ozonation. Under the conditions of this experiment, ozonation alone and pumice-catalyzed ozonation for degradation of pCNB were primarily oxidized by highly active hydroxyl radicals.


1996 ◽  
Vol 50 (11) ◽  
pp. 1352-1359 ◽  
Author(s):  
Ping Chiang ◽  
Kuang-Pang Li ◽  
Tong-Ming Hseu

An idealized model for the kinetics of benzo[ a]pyrene (BaP) metabolism is established. As observed from experimental results, the BaP transfer from microcrystals to the cell membrane is definitely a first-order process. The rate constant of this process is signified as k1. We describe the surface–midplane exchange as reversible and use rate constants k2 and k3 to describe the inward and outward diffusions, respectively. The metabolism is identified as an irreversible reaction with a rate constant k4. If k2 and k3 are assumed to be fast and not rate determining, the effect of the metabolism rate, k4, on the number density of BaP in the midplane of the microsomal membrane, m3, can be estimated. If the metabolism rate is faster than or comparable to the distribution rates, k2 and k3, the BaP concentration in the membrane midplane, m3, will quickly be dissipated. But if k4 is extremely small, m3 will reach a plateau. Under conditions when k2 and k3 also play significant roles in determining the overall rate, more complicated patterns of m3 are expected.


1969 ◽  
Vol 113 (4) ◽  
pp. 611-615 ◽  
Author(s):  
J. Leichter ◽  
M. A. Joslyn

Results are presented on the rate of thiamin cleavage by sulphite in aqueous solutions as affected by temperature (20–70°), pH(2·5–7·0), and variation of the concentration of either thiamin (1–20μm) or sulphite (10–5000μm as sulphur dioxide). Plots of the logarithm of percentage of residual thiamin against time were found to be linear and cleavage thus was first-order with respect to thiamin. At pH5 the rate was also found to be proportional to the sulphite concentration. In the pH region 2·5–7·0 at 25° the rate constant was 50m−1hr.−1 at pH5·5–6·0, and decreased at higher or lower pH values. The rate of reaction increased between 20° and 70°, indicating a heat of activation of 13·6kcal./mole.


1966 ◽  
Vol 19 (8) ◽  
pp. 1365 ◽  
Author(s):  
RH Smith ◽  
IR Wilson

Initial rates of reaction for the above oxidation have been measured by a stopped-flow conductance method. Between pH 2 and 3.6, the initial rate of reaction, R, is given by the expression R{[HSO5-]+[SCN-]} = {kb+kc[H+]}[HSO5-]0[SCN-]20+ka[H+]-1[HSO5]20[SCN-]0 As pH increases, there is a transition to a pH-independent rate, first order in each thiocyanate and peroxomonosulphate concentrations.


1992 ◽  
Vol 45 (12) ◽  
pp. 1943 ◽  
Author(s):  
SJ Dunne ◽  
RC Burns ◽  
GA Lawrance

Oxidation of Ni2+,aq, by S2O82- to nickel(IV) in the presence of molybdate ion, as in the analogous manganese system, involves the formation of the soluble heteropolymolybdate anion [MMogO32]2- (M = Ni, Mn ). The nickel(IV) product crystallized as (NH4)6 [NiMogO32].6H2O from the reaction mixture in the rhombohedra1 space group R3, a 15.922(1), c 12.406(1) � ; the structure was determined by X-ray diffraction methods, and refined to a residual of 0.025 for 1741 independent 'observed' reflections. The kinetics of the oxidation were examined at 80 C over the pH range 3.0-5.2; a linear dependence on [S2O82-] and a non-linear dependence on l/[H+] were observed. The influence of variation of the Ni/Mo ratio between 1:10 and 1:25 on the observed rate constant was very small at pH 4.5, a result supporting the view that the precursor exists as the known [NiMo6O24H6]4- or a close analogue in solution. The pH dependence of the observed rate constant at a fixed oxidant concentration (0.025 mol dm-3) fits dequately to the expression kobs = kH [H+]/(Ka+[H+]) where kH = 0.0013 dm3 mol-1 s-1 and Ka = 4-0x10-5. The first-order dependence on peroxodisulfate subsequently yields a second-order rate constant of 0.042 dm3 mol-1 s-1. Under analogous conditions, oxidation of manganese(II) occurs eightfold more slowly than oxidation of nickel(II), whereas oxidation of manganese(II) by peroxomonosulfuric acid is 16-fold faster than oxidation by peroxodisulfate under similar conditions.


Sign in / Sign up

Export Citation Format

Share Document